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Abstract. New approaches to solving the synthesis problem for a periodic grating from the
incomplete set of scattering characteristics given in the frequency range or (and) on the interval
of angles of incidence of plane waves are presented. These schemes are based on the idea of
quasi-linearization of integral expressions of potential theory and allow one to obtain satisfactory
results in long wavelength and, partially, in resonant (with respect to the grating sizes) ranges. The
efficiency of the corresponding algorithms has been verified numerically.

1. Introduction

An investigation of dispersive properties of diffraction gratings [1, 2] has revealed a diversity
of interesting phenomena from the standpoint of their practical implementation. However,
the use of gratings as selective elements in resonance quasi-optical devices is substantially
restricted by the complexity of the initial analysis of a designed unit. This analysis must meet
two requirements. On the one hand, it has to take into account all key operating parameters
of separate elements and, on the other hand, to judge the effectiveness of the system as a
whole. This is the general problem ofmodel synthesisin the design of resonance quasi-optical
systems. The solution of this problem is divided naturally into the following conceptually
independent steps. The first one is the construction of the electrodynamic model accounting
for analytically an influence of scattering inhomogeneities varying in wave size. The second
step consists in the analysis and parametric optimization of the electrodynamic model. The
third step is the formation of the input data set for the synthesis of dispersive elements, such
as gratings, and the last one is the solution of relevant inverse problems.

Here we present numerical algorithms for solving inverse boundary value problems for a
perfectly conducting periodic grating with arbitrary height profile. The results are guided by
key problems of the model synthesis of such resonance quasi-optical systems as efficiently
absorbing and rescattering coatings, plane pattern-forming structures and open dispersive
resonators with a considerably rarefied spectrum [3]. An analysis of the literature [4] shows
that there is no reliable recommendation to progress in this direction. This fact determines the
subject of our investigation. It is rare for gratings to come into the view of inverse problem
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Figure 1. Geometry of the problem.

specialists. The number of important results in this field (see, for example, [5]) is not large,
especially from the standpoint of the efficient solution of diversified applied problems.

2. Basic equations and formulation of the inverse problem

Let a grating (see figure 1, the structure is uniform in thex-direction) be illuminated by a plane
E-polarized electromagnetic waveUp(y, z) = exp[i(8py − 0pz)]. Hereafter,8p = p +8,
8 = κ sinϕ,0p = (κ2−82

p)
1/2, Re0p > 0, Im0p > 0,p = 0,±1, . . .; κ is a dimensionless

frequency parameter equal to the true grating’s period to incident wavelength ratio,ϕ is
an angle of incidence;S is a part of a periodic boundary, of period 2π , lying in the strip
R = {g : 0 6 y 6 2π}, g = {y, z}; Up = Ex is the only nonzero component of the electric
field vector. We use dimensionless space–time coordinates wherein a period of the grating
equals 2π and a time dependence factor is exp(−iκt). The solutionU(y, z) of the direct
scattering problem everywhere in the strip R with the exception of the points of the boundary
S can be represented as a single-layer potential [6, 7]

U(g)− Up(g) = −
∫
S

µ(g0)G(g; g0) dg0, g0 = {y0, z0}, (1)

where the continuous functionµ(g0) is a solution to the singular integral equation∫
S

µ(g0)G(g; g0) dg0 = Up(g), g ∈ S
and the Green functionG is given by

G(g; g0) = −(i/4π)
∞∑

n=−∞
0−1
n exp{i[8n(y − y0) + 0n|z− z0|]}.

Further assume that the boundaryS is described by a single-valued functionf (y) : f (y) 6 0.
Using the radiation condition [6]

U(g) = Up(g) +
∞∑

n=−∞
anp exp[i(8ny + 0nz)]

(anp are complex amplitudes of harmonics of the diffraction spectrum) and the trivial condition

U(g) = 0 for z < f (y)

we have from (1) that{
anp
−δpn

}
= (i/4π0n)

∫ 2π

0
η(y0)

{
exp[−i0nf (y0)]
exp[i0nf (y0)]

}
exp(−iny0) dy0,

n = 0,±1, . . . , (2)
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where

η(y0) = µ[y0, f (y0)]{1 + [df (y0)/dy0]2}1/2 exp(−i80y0).

The inverse problem is to find the boundaryS from the fieldU(y, z) given exactly or
not by the complex amplitudes{anp} in the regionz > 0. The variety of inverse problems
in electromagnetic theory of gratings is largely conditioned by the diversity of ways to form
the input data set. (The calculation or measurement accuracy and the number of amplitudes,
as well as the ranges of parametersκ andϕ, can be chosen differently.) The classification of
inverse problems (visualization, synthesis, parametric optimization) and the general questions
associated with their well-posedness and solution (existence and uniqueness, linearization and
regularization procedures) are discussed in [4, 5, 8, 9]. In [10] on the basis of equations (2) we
construct closed algorithms for visualization (reconstruction) off (y) from fixed frequency
(κ) and fixed illumination angle(ϕ) data. If the input data are complete and exact enough, the
suggested algorithms ensure a satisfactory accuracy of the reconstruction for shallow surfaces
(the profile depth is twice as large as wavelengthλ) in the frequency range where a grating
period is less than 4λ. The techniques developed in [10] are partially used below for solving
the synthesis problem which is to determine the grating realizing the given complex amplitudes
anp(κ,8) (or close to them) in the given ranges of parametersκ and (or)8. The dimension of
the input data set and the dimensionality of the integral equations (single, dual, etc) involving
these data as the known part only are changed. Clearly there has to be a proper change in
domains of the functionsanp(κ,8) (separate ranges ofκ and8 or their direct product), of
integral operators, etc. So, rather than set forth the general situation we restrict the discussion
to the case of fixedn and8. Then the problem is to synthesize a grating with the profile
z = f (y) such that the amplitude of thenth spatial spectrum harmonic differs little from
an0(κ), Re0n(κ) > 0 in the frequency range [κ1, κ2].

3. Two synthesis algorithms

The first step is the same for both algorithms and consists in expanding the exponential functions
exp[i0nf (y)] in the second relation (2) in power series. With only the highest terms in these
series remaining we obtain

η(y, κ) ≈ 2i00. (3)

Substituting (3) in the first equation of (2), we get the classical nonlinear problem (n is fixed)

an0(κ) = −(00/2π0n)
∫ 2π

0
exp{−i[0nf̂ (y) + ny]} dy, κ ∈ [κ1, κ2] (4)

for the unknown functionf̂ (y)approximatingf (y), and we have to invert the Urysohn operator

A[f ] = −(00/2π0n)
∫ 2π

0
exp{−i[0nf (y) + ny]} dy, (5)

which is continuous from C[0, 2π ] into C[κ1, κ2] (C[a, b] is the space of continuous functions
defined on [a, b]).

We linearize the problem by means of functional differentiation. The Fréchet derivative
of operator (5) at the pointg(y) ∈ C[0, 2π ] is the bounded linear operatorBg : C[0, 2π ] →
C[κ1, κ2], which can be written [11]

Bg[f ] = (i00/2π)
∫ 2π

0
exp{−i[0ng(y) + ny]}f (y) dy.
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Using the Newton–Kantorovitch algorithm, we reduce problem (4) to the determination of
f̂ (y) = limm→∞ fm(y), where{fm(y)} is the sequence of solutions of the linear problems

Bfm [fm+1(y)− fm(y)] = −A[fm(y)] + an0(κ), m = 0, 1, 2, . . . (6)

or, in the simplified form,

Bf0[fm+1(y)− fm(y)] = −A[fm(y)] + an0(κ), m = 0, 1, 2, . . . . (7)

The bounded invertibility of the operatorsBfm and an appropriate choice for initial
estimation f0(y) in iterative procedures are fundamental requirements to provide the
convergencefm(y) → f̂ (y) and the computational efficiency of the algorithms based on
the inversion of equations (6) or (7) [11]. Since the required properties are not shared by the
operatorsBfm (whose kernels are sufficiently smooth functions), it is necessary to regularize
integral equations of the first kind (6) or (7).

Let us consider the integral operatorBfm : L2[0, 2π ] → L2[κ1, κ2] and the adjoint operator

B∗fm [a(κ)] = (i/2π) exp(iny)
∫ κ2

κ1

00 exp[i0nfm(y)]a(κ) dκ.

By L2 denote spaces of functions such that their moduli are square integrable. Assuming that
the right-hand side of (6) does not belong to a nullspace ofB∗fm , we obtain the equivalent
problem

B∗fmBfm [fm+1(y)− fm(y)] = −B∗fmA[fm(y)] + B∗fm [an0(κ)],

06 y 6 2π, m = 0, 1, 2, . . . . (8)

Its operator is self-adjoint, positive, and compact from L2 into L2. It follows that the ill-posed
operator equations of the first kind (8) can be replaced by the operator equations of the second
kind by using the so-called Lavrent’ev regularization method (see, for example, [12]). The
problem takes the form

(αm +B∗fm,αBfm,α )[fm+1,α(y)− fm,α(y)] = −B∗fm,αA[fm,α(y)] + B∗fm,α [an0(κ)],

αm > 0, 06 y 6 2π, m = 0, 1, 2, . . . , (9)

whereαm are the regularization parameters. The solutionsfm,α(y) converge tofm(y) in the
appropriate space norm asαm → 0. The sequence{fm(y)}, thus defined, gives the desired
profile f̂ (y) in the limitm→∞.

The equivalent reformulation and the regularization of problems (7) can be conducted
similarly. The degree of convergencefm(y)→ f̂ (y) in this case is lower [11]. However, the
advantages resulting from the statistical character of the operatorBf0 are worthy of notice. We
have to invertBf0 properly only once. Without going into details and assumingf0(y) ≡ 0 let
us write at once

α[fm+1,α(y)− fm,α(y)] + γ1 exp(iny)
∫ 2π

0
exp(−iny0)[fm+1,α(y0)− fm,α(y0)] dy0

= γ2(m, α, y), (10)

where

γ2(m, α, y) = (i/4π2) exp(iny)
∫ κ2

κ1

(02
0/0n)

{∫ 2π

0
exp{−i[0nfm,α(y0) + ny0]} dy0

}
dκ

+(i/2π) exp(iny)
∫ κ2

κ1

00an0(κ) dκ,

γ1 = (1/4π2)

∫ κ2

κ1

02
0 dκ, m = 0, 1, 2, . . . , α > 0, 06 y 6 2π.
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The kernels of integral equations of the second kind (10) are degenerate. This allows us to
give the solution in an explicit form

α[fm+1,α(y)− fm,α(y)] = γ2(m, α, y)− γ1γ3(m, α)(α + 2πγ1)
−1 exp(iny),

α > 0,

γ3(m, α) =
∫ 2π

0
exp(−iny)γ2(m, α, y)dy.

(11)

Let α→ 0. Calculating the sequence{fm(y)} for growingm we arrive at the desired̂f (y).

4. The problem of initial approximation and numerical results

One possibility to choose the initial valuef0(y) in iterative procedures have already been
realized in (7), (10), and (11). However, on the whole, this question remains open (in the
inversion of nonlinear problem (4)) and calls for certain efforts for its satisfactory resolution.
The scheme below is more crude, but it is self-closed and can be useful both in solving
synthesis problems and in obtaining ‘good’ estimationsf0(y). The essence of the algorithm
is as follows:n and8 are considered fixed as before, the formulation of the inverse problem
remains unchanged. Representation (3) is used in the second equation of system (7) from [10]
(N = 1), which has to be inverted with respect to the unknown functionf̂ (y). The resulting
integral equation of the first kind

an0(κ) + δ0
n = (i00/π)

∫ 2π

0
f̂ (y) exp(−iny) dy, κ ∈ [κ1, κ2]

is reduced to the integral equation of the second kind

αf̂α(y) + exp(iny)(κ2 − κ1)

∫ 2π

0
exp(−iny0)f̂α(y0) dy0

= − iπ exp(iny)
∫ κ2

κ1

0−1
0 [an0(κ) + δ0

n] dκ, 06 y 6 2π (12)

Figure 2. Control profile (full curve 1) and synthesized profiles (curves 2–6) for different input
data sets. 2:M = 1. 3: M = 2. 4: M = 3. 5: M = 11. 6:M = 31. M is the number of exact
scattered amplitudesan1,0, . . . , anM ,0 of the control structure included in the input data set for the
synthesis problem.
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Figure 3. Absolute value (a) and argument (b) of the diffraction spectrum amplitudea0,0(κ) for
control (full curves 1) and synthesized (curves 2–6) gratings. Curves 2–6 correspond to different
input data sets. 2:M = 1. 3:M = 2. 4:M = 3. 5:M = 11. 6:M = 31.

by using the Lavrent’ev regularization method. The solutionf̂α(y) exists, is unique, and tends
to f̂ (y) asα → 0 (‖f̂α(y) − f̂ (y)‖L2 → 0 asα → 0). The kernel of the integral operator
in (12) is degenerate, therefore the functionf̂α(y) can be written in an explicit form. It is
coincident with (11) up to notation.

The case whenM scattered amplitudesan1,0, an2,0, . . . , anM,0 in the frequency range are
given is more frequent in applied problems. The technique used in this situation is identical
to that forM = 1. Without going into details let us write the final formula:

f̂ (y) = Re

{
[2i00(κ2 − κ1)]

−1
∫ κ2

κ1

M∑
m=1

(anm,0 + δ0
nm
) exp(imy) dκ

}
. (13)

Figures 2–5 illustrate the numerical results of synthesis of the grating realizing the given
amplitudesanm,0(κ) in the frequency range 0.6526 κ 6 0.952 withϕ = 10◦. We take the
requirements imposed upon the synthesized structures from the solution of the direct scattering
problem. The method employed (the analytical regularization method [6, 13]) is based on the
idea of analytical inversion of the singular part of a boundary integral equation of potential
theory (see section 2) and reduces the initial ill-posed problem to the Fredholm infinite system
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Figure 4. Same as figure 3 except the illustration is given for the amplitudea−1,0(κ).

of linear algebraic equations. The properties of the matrix operator of this system allow the
use of a rapidly converging (in the norm of one of the spaces of infinite sequences) reduction
method. The control profile (see figure 2) and the relevant scattering characteristics (see
figures 3–5) are depicted by the full curves 1. The dotted and broken curves 2–6 are profiles of
synthesized structures and their scattering characteristics. The curves 2–6 correspond to the sets
of the input data{a0,0(κ);M = 1}, {a−1,0(κ), a0,0(κ);M = 2}, {a±1,0(κ), a0,0(κ);M = 3},
{a−5,0(κ), a−4,0(κ), . . . , a5,0(κ);M = 11}, and{a−15,0(κ), a−14,0(κ), . . . , a15,0(κ);M = 31},
respectively. We can estimate the result as wholly satisfactory. The fulfilment of requirements
is in reasonable error, we can predict the dynamics in transformation of synthesized profiles as
M increases. These changes are consistent with the statement (see [4]) about the uniqueness
of the inverse problem solution in the case of a complete set of exact input data. Note that
M in the numerical example is not an iterative process variable. EachM determines its own
problem with its distinctive set of features required of the synthesized structure. Figures 2–5
allow us to judge the accuracy of the fulfilment of these requirements in the framework of the
algorithm. For a correct comparative estimation of the accuracy we must take account of the
arguments and the absolute values of the amplitudesan,0(κ) on the whole interval [κ1, κ2] for
all significant values ofn. An examination of just one fragment (for example, the fragment
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Figure 5. Same as figure 3 except the illustration is given for the amplitudea1,0(κ).

Figure 6. Control profile (full curve 1) and synthesized profiles (curves 2–4) for different levels of
distortion of the input data.
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Figure 7. Scattering characteristics of the control (full curve 1) and synthesized (curves 2–4)
structures.

from figure 3(b) where the characteristic arga0,0(κ) for synthesized structures deviates from
the desired one) is inadequate to formulate the conclusions.

The sequence of the resolved synthesis problems can be considered as the solution of the
profile reconstruction problem with an incomplete set of exact input data. (The completion is
achieved by a growth ofM.) Since the reconstruction problem is stated in a frequency range, the
solution must converge to the real profile asM is sufficiently large [4, 8, 9]. Figures 2–5 confirm
the ‘internal’ convergence of the method (curves 5 and 6 merge together almost everywhere),
yet show a minor difference between the reconstructed (the result forM = 31) and the real
profile. (The error is up to 6% in a uniform metric for profiles.) This rather regular error is
stipulated by the approximation of the algorithm. The less the relative grating height, the less
the error [10]. It can be reduced substantially by the use of two basic algorithms described
above. The numerical example presented here concerns in essence the problem of choosing
the initial estimation in these schemes. However, the characteristics of the obtained solution
allow us to use it not only as a ‘good’ initial estimationf0(y) in nonlinear problem (4), but
also as a final or intermediate result in the relevant synthesis problems or in the reconstruction
problems with an incomplete set of exact input data.



550 Y K Sirenko et al

A few words about the robustness of the algorithm with respect to faint noise in the
input data. Random deviations of the valuesan,0(κ) from the exact values to within 10%
do not introduce large errors into the synthesis or reconstruction problem solution. This
is supported by the results of the numerical experiment presented in figures 6 and 7. The
problems are solved in the frequency range 0.702 6 κ 6 1.202 with ϕ = 15◦ for
the control profilef (y) = 0.27(siny + cos2 y − 1.25). The set of the input data is
{a−10,0(κ), a−9,0(κ), . . . , a10,0(κ);M = 21}. Curves 1 are the control grating and its scattering
characteristics, curves 2–4 are the synthesized structures and their scattering characteristics.
Curves 2 correspond to the exact input data, curves 3 and 4 correspond to the input data
distorted randomly within 5% and 10%, respectively.
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