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ABSTRACT

Yevtushenko F.O. Resonant scattering and absorption of electromagnetic
waves by infinite gratings of grapheme strips on dielectric substrates. — Qualifying

research work in the form of a manuscript.

This thesis is submitted in fulfillment of conditions for obtaining the degree of
Doctor of Philosophy in specialization #104 — Physics and Astronomy (10 - Natural
Sciences). - O. Y. Usikov Institute for RadioPhysics and Electronics NAS of Ukraine,
Kharkiv, 2023.

The thesis undertakes a comprehensive theoretical analysis of the scattering,
absorption and emission of electromagnetic waves by infinite gratings of graphene
strips lying on dielectric substrates. The practical significance of this research lies in its
implications for electromagnetic-wave devices and systems working in the terahertz,
infrared, and visible-light ranges. In this connection, the appearance of graphene has
opened many new and exciting opportunities. This is because graphene has high
electron mobility, controlled with the aid of DC biasing (via the graphene chemical
potential), and displays plasmonic effects.

The goal of the work is, first, the study of resonance effects in the H- and E-
polarized electromagnetic wave scattering and absorption by infinite grating of
graphene strips lying on dielectric substrate. Such a metasurface is expected to behave
as a composite periodic open resonator. Its high frequency selectivity follows from the
existence of three types of natural modes: low-Q slab modes and ultrahigh-Q lattice
modes, which exist in either polarization provided that the substrate is present, and
moderate-Q plasmon modes of graphene strips that appear only in the H-polarization.
Second, another important goal is to study the threshold conditions for the H- and E-
polarized lasing modes of infinite flat grating of graphene strips lying on the gain-
material substrate. Here, special attention is paid to the tunability of the plasmon modes

and ultrahigh-Q lattice modes with the aid of graphene’s chemical potential.



To achieve these goals, the following tasks are considered:

- Derivation of the well-conditioned matrix equations for the plane wave scattering
and absorption by infinite grating made of zero-thickness graphene strips placed on
dielectric substrate in the cases of the E- and H-polarizations. This derivation is based
on the full-wave formulation of the corresponding boundary value problems of the wave
scattering. The matrix equations obtained yield the basis of the numerical algorithms.

- Writing and testing the full-wave meshless codes in the Matlab environment and
validating them by comparison with the published earlier results of the other convergent
numerical methods, when available.

- Study of the behavior of the computational error depending on the order of
truncation of the matrix equations, to confirm the convergence of the algorithms and
visualize the effect of various parameters on the rate of convergence.

- Systematic use of the developed computer codes for the analysis of the scattering
and absorption characteristics of the considered graphene-strip metasurfaces, especially
their tunability with the aid of graphene’s chemical potential.

- Derivation of approximate formulas for the frequencies and Q-factors of the
plasmon, lattice and dielectric substrate modes.

- Adapting the derived well-conditioned matrix equations to the case of substrate,
maid of the gain material. Combining these equations with iterative search of the roots
of determinantal equations. Systematic full-wave analysis of threshold conditions for
the modes of infinite graphene strip grating located on gain-material substrate in the
cases of the E- and H-polarizations.

At the preliminary step, the study deals with auxiliary problems of the plane E and
H-polarized wave scattering from an infinite flat grating of the perfectly electrically
conducting (PEC) zero-thickness strips, placed on the interface of a dielectric slab.
Following the approach first developed in the 1960s, we reduce this problem, for either
polarization, to a dual series equation (DSE) for the complex amplitudes of the scattered
field Floquet spatial harmonics. Then we perform analytical regularization of this

equation, based on the inversion of the static part of the problem, associated with



grating in free space, with the aid of the Riemann-Hilbert Problem (RHP) technique. In
each case, this yields Fredholm second-kind infinite matrix equation, numerical solution
of which has a guaranteed convergence. We cast these equations to the form, convenient
for computations. Then, we perform numerical experiments demonstrating how the rate
of convergence of our meshless code depends on the thickness and dielectric
permittivity of the slab. The scattering characteristics reveal the resonances on the slab
modes and the lattice modes of the whole grating as a periodic open resonator.
Subsequently, the investigation extends to the scattering of the E and H-polarized
plane waves by the similar grating however with graphene strips on the surface of a
dielectric-slab substrate. The complex conductivity of graphene is modelled using the
Kubo formulas. Due to finite conductivity, the boundary conditions on the strips turn to
the two-side resistive conditions. In the case of the H-polarization, our treatment is
based on the analytical semi-inversion, using the RHP solution, thus it is a modification
of the PEC-strip regularization. However, in the case of the E-polarization, the RHP
technique is not applicable. Instead, we make analytical regularization using the Inverse
Discrete Fourier Transform (IDFT). These techniques are known since the 2000s for the
free standing imperfect strip gratings, however, we adapt them to the case of on-
substrate strip grating. In the either polarization, we obtain a Fredholm 2-nd kind matrix
equation for the Floguet harmonic amplitudes that guarantees the convergence of the
full-wave meshless codes based on these equations. The computational error can be
controlled and reduced even to machine precision. In either polarization, the matrix
elements involve only elementary functions and therefore the codes are not only
accurate but very economic. Using such a trusted instrument, we perform detailed
numerical analysis of the wave scattering and absorption and focus on the rich interplay
between the resonances on various natural modes. In the case of the H-polarization, new
phenomenon, with respect to the PEC-strip grating, is the existence of the plasmon
modes of graphene strips. Their frequencies are tunable in wide range (within a factor of
two or three) with the aid of the graphene’s chemical potential. In both polarizations, we

demonstrate multiple ultrahigh-Q resonances on the lattice modes, which do not exist in



the absence of the substrate and are caused, jointly, by the periodicity and the existence
of the guided waves of the substrate. New effect is the regime of the electromagnetically
induced transparency, which takes place when enhanced reflection at the plasmon
resonance is spoiled by the quasi-total transmission in the sharp lattice-mode resonance.

Finally, the thesis explores the threshold conditions for the H and E-polarized
lasing modes of the graphene-strip grating on substrate. The substrate material is
assumed to have the gain that offsets the radiation and ohmic losses and allows the
modes to reach the lasing threshold. We look for the frequency and the gain-index
threshold value, specific to each mode, as eigenvalues. To find them, we reduce the
field problem to a DSE for the complex amplitudes of the Floquet spatial harmonics,
which we analytically regularize using the RHP technique in the H-mode case and IDFT
in the E-mode case. In the either case, this yields a Fredholm second-kind infinite
determinantal equation for the eigenvalues. Increasing the matrix truncation number
guarantees the convergence of these quantities to their exact values.

The following new scientific results have been obtained in the work:

- In the plane-wave scattering, we have visualized the rate of convergence of the
corresponding numerical algorithms and its dependence on various parameters of the
substrate and the grating, including the graphene parameters.

- Our computations have shown the existence of the ultrahigh-Q resonances on the
lattice modes in both polarizations, red-shifted from the Rayleigh Anomalies due to the
guided waves of the substrate. If the periodicity vanishes, their frequencies tend to the
purely real values so that Q-factors grow unlimitedly. These resonances do not exist on
the PEC-strip and graphene-strip gratings placed in the free space.

- In the H-polarization case, we have quantified the resonances on the plasmon
modes and found the effect of electromagnetically induced transparency (EIT) that
appears thanks to the tunability of the plasmon modes with the aid of graphene’s
chemical potential. As shown, it is possible to realize the electrostatic-bias controlled
EIT in the THz range on the metasurface of microsize period. This can be useful in the

design of novel tuneable sensors, filters, modulators and absorbers that use periodically



patterned graphene.

- In the E-polarization case, we have studied the lattice-mode resonances
numerically and have shown analytically how the corresponding complex poles migrate
to the non-physical sheet of the Rayleigh-Anomaly Riemann surface if the substrate
vanishes.

- In the analysis of threshold conditions, we have computed the emission
frequencies and threshold values of the substrate gain for the lasing modes of the
considered metasurface nanolaser, visualized their near fields, and discussed their
characteristics. The lowest thresholds are found for the lattice modes of the odd
symmetry in each polarization, while the best tunability is demonstrated by the H-
polarized plasmon modes. These findings open the way to design large-area tunable

low-threshold micro- and nano-lasers of the terahertz and infrared ranges.

Keywords: strip grating, dielectric, scattering, regularization, resonance, plasmon

mode, lattice mode, threshold, nanolaser.



AHOTAIUS

€emyuwenko @.0O. Pe3oHAHCHE PO3CISIHHA TA MOTJIMHAHHS €JIEKTPOMATHITHUX
XBHJIb HECKIHYEHHMMH PpelliTKaMHM 3 rpa@eHoBHX CTPIYOK HA [ieJIeKTPUYHUX

nigkaaakax. — Ksamidikariina HaykoBa mparis Ha IpaBaxX PyKOIHCY.

Hucepraitiss Ha 3100yTTS HAyKOBOIO CTymeHs JokTtopa ¢dirocodii 3a
cnemianbHicTiIO 104 — ¢izuka ta actponomis (10 — mpupomuudi Hayku). - [HCTHTYT

pamiodizuku Ta enekrpoHiku im. O. 5. Yceuxoa HAH Ykpainu, Xapkis, 2023.

Y nucepraiii TNpPOBEICHO KOMIUIEKCHHN TEOPETUYHUN aHalli3 PO3CISHHS,
MOTJIMHAHHSA Ta BUIPOMIHIOBAHHS  €JICKTPOMATrHITHUX XBUJb HECKIHYCHHUMU
pemnTkaMd 3 TpaeHOBUX CTPIYOK, WHIO JIekKAaTh HA [IEIEKTPUYHHUX IM1IKIaIKaX.
[IpakTruHe 3HAUYEHHS IILOTO JOCIIIKEHHS TIOJISATa€e B TOMY, 110 BOHO Ma€ 3aCTOCYBAHHS
B  €JIEKTPOMAarHiTHO-XBUJIBOBUX THPHUCTPOSIX 1 CHUCTEMax, SKI MOpaliolTh ¥y
TepareplieBoMy, 1H(pauepBOHOMY Ta BHUIMMOMY Jiana3oHax CBITIA. Y I[bOMY
KOHTEKCTI MosiBa rpadeHy BIIKpUBaE Oarato HOBHX 1 3aXOIUIIOIOUNX MOXIHUBOCTEH. [le
MOB'SI3aHO 3 TUM, IO TpadeH Mae BHUCOKY pPYXJHBICTh EJEKTPOHIB, IO MOXE
MIEPECTPOIOBATHCS 3a €JIEKTPOCTATUYHUM YMHOM (Uepe3 XIMIYHUMN MOTEHIIIaln rpadeny),
1 IPOSBJISE TIJIA3MOHHI €(DEeKTH.

Metorw po6oTH €, Mo-Meplie, BUBUECHHS PE30HAHCHUX €(EKTIB y PO3CIsIHHI Ta
nornuHanHi H- Ta E-monsipu3oBaHMX €NEKTPOMArHITHUX XBWJIb HECKIHYEHHOIO
PELITKOIO 3 TpadeHOBUX CTPIYOK, IO JIEKATh HA MACUBHIN JICNEKTPUYHINA IT1IKIA]ILII.
Mo>kHa O4iKyBaTH, 110 TaKa METAIIOBEPXHS MOBOJAUTHCS K KOMIIO3UTHUHN TIEPi0IMIHUHT
BiIKpUTHIi pe3oHaTOp. [i BUCOKA 4aCTOTHA CEJIEKTHBHICTh BUILIMBAE 3 iICHYBAaHHS TPHOX
TUITIB BJIACHUX MOJ: HU3BKOJOOPOTHUX MOJ MIAKIAAKA 1 HAIBUCOKOJAOOPOTHUX MOJT
PENITKY, K1 ICHYIOTh B 000X MOJIIpU3AIliSX 32 YMOBH HAsSBHOCTI MIIKJIATKHA, a TaAKOX
MOMIPKOBaHO-T00POTHUX TIA3MOHHUX MOJI Tpad)€HOBUX CTPIYOK, sIKI ICHYIOTh TUTBKH B

H-nonspu3zanii. Ilo-apyre, 1me oAHIE0 BaKJIMBOK METOIO € BUBYEHHS MMOPOTOBUX YMOB



st H- 1 E-nonsipru3oBaHuX MOJI JIa3€pHOTO BUIPOMIHIOBAHHS HECKIHYEHHOI IIOCKOT
pEIITKH 3 TpaeHOBUX CTPIYOK, 1110 JEKaTh Ha MiIKIAALI 3 MiJCHII0I0YOro MaTepiaty.
[Ipu npoMy ocCOONMBY yBary NpHUAUIEHO TMEPECTPOIOBAHHIO IJIA3MOHHUX MO 1
HAJBUCOKOAOOPOTHUX MOJI PENIITKH 33 JOTIOMOTOI0 XIMIYHOTO MTOTEHITIaTy Tpadeny.

JUIst TOCATHEHHS IOCTABJICHOI METH PO3IVISAA0THCA HACTYIIHI 3a/1a4i:

- BuBenenns mo0pe OOyMOBJIEHMX MATPUYHUX PIBHAHBb JJII PO3CISHHS Ta
MOTJIMHAHHSA IJIOCKUX XBHJIb HECKIHUEHHOIO PEIIITKOIO 3 Tpad)eHOBHUX CTPIYOK HYIHOBOI
TOBIIMHY, PO3MIIIICHUX Ha JIJICKTPUYHINA MAKIaIIl, y Bunajakax E- ta H-momspuzariii.
Lle rpynTy€eThCst Ha cTporomy (HOpPMYJTIOBaHHI BIAMOBIAHUX KPaHOBUX 3a/1a4 PO3CISTHHS
XBWIb. OTpUMaHiI MaTpUYHI PIBHSHHS CTAHOBJISATH OCHOBY YMCEJIbHUX aJTOPUTMIB.

- Hanucanns # TecTyBaHHS MOBHOXBWJIBOBHX OE€3CITKOBUX KOJIB y CEpPEOBHIII
Matna® Ta ixHS ©epeBIipKa ULUISIXOM TOPIBHSHHSA 3 OMNYOJIKOBAHMMM paHIIIE
pe3yibTaTamMu 1HIIMX 301KHUX YUCEJIbHUX METO/IIB 32 IXHhOT HAsIBHOCTI.

- JlocnimkeHHs MOBEAIHKM OOUYHCIIIOBAIBLHOI MMOXUOKHA B 3aJICKHOCTI B TTOPSIAKY
YCIKaHHS MATPUYHHUX PpIBHSAHb Ui MIATBEPJDKEHHS 301KHOCTI aJIrOpUTMIB 1
Bi3yastizallli BIUTMBY P13HUX MapaMeTpiB HA MIBUIKICTH 301)KHOCTI.

- CucremaTU4HEe BUKOPUCTAHHS PO3POOJICHUX KOMIT'IOTEPHUX KOMIB JIJISl aHai3y
XapaKTePUCTHK PpO3CISHHA Ta TIOTJIMHAHHSA XBWIb Ha PO3TJSIHYTUX TpaeHOBUX
CTPIUKOBUX METANOBEPXHIX, OCOOIMBO 3 TOYKA 30pY MOMIMUBOCTI iXHBOTO
HaJIalITyBaHHS 32 JJOMMOMOTOI0 XIMIYHOTO MOTEHITIay Tpadeny.

- BuBenennst HaOnmkeHUX HOpPMYIT JJIs1 4aCTOT 1 JOOPOTHOCTEH MIIA3MOHHUX MO,
PENITKOBUX MOJI Ta MOJI JIEICKTPUYHOI 1 IKIIAKH.

- Apanraiisi OTpUMaHUX J0Ope OOYMOBJIEHHWX MATPUYHHUX PIBHSIHBb A0 BUIAAKY
MIIKIAIKA, 10 CKJIAIa€Thes 3 MaTepialy 3 mocuiaeHHsM. [loenHaHHs muX piBHSHB 3
ITepalifiHUM TMOUTYKOM KOPEHIB JETEPMIHAHTHUX pIBHSIHL. CHCTEMaTUYHHUA CTPOrUM
aHa i3 TMOPOTOBUX YMOB JUIsl BJIACHUX MOJ| HECKIHYEHHOI TpadeHOBOi pEelIiTKH Ha
MIIKIAI 3 MaTepiany 3 MocuiieHHsIM y Bunaakax H- 1 E-monspuzartiii.

Ha monepeanromMy ertami JOCTIIKEHHS PO3TJISHYTO JOMOMIDKHI 3a7a4l pO3CIsTHHS

miockux H- 1 E-monspu3oBannx XBUIIb Ha HECKIHYEHHIN TJIOCKINA PENIITIN 3 17€aIbHO



MPOBITHUX CTPIYOK HYJIHOBOI TOBIIMHHU, PO3MIIICHUX Ha IOBEPXHI J1EICKTPUIHOL
nigkaagkd. JIoTpuMyrdnch miaxomy, Brepiie po3pobieHoro B 1960-x pokax, mMu
3BOJIUMO 1110 3aJ]a4y JIJIsl KOXKHOT 3 IBOX MOJISIpU3aIliil 1O pIBHSHHS B MapHUX psAax JJis
KOMITJIEKCHUX aMIUTITY/l MPOCTOPOBUX TapMOHIK poscisHoro mojs dmoke. [Totim mMu
BUKOHYEMO aHAJITHUHY PETYJISpHU3aIlii0 IIbOrO PIBHAHHA, 3aCHOBaHYy Ha OOEpHEHHI
CTaTUYHOI YaCTUHU 3aJadyi, MOB'S3aHOT 3 PEHIITKOI0 Yy BUIBHOMY IMPOCTOpPi, 3a
J0TOMOror0 Metoay 3anadi Pimana-I'in6Gepra. Y Ko)KHOMY BUTIAJIKY 1€ Ja€ HECKIHUCHHE
MaTpu4He piBHAHHS Dpearonbma JIpyroro pojay, YUCEIbHUN PO3B'SI30K SKOTO Mae
rapaHToBaHy 301KHICTh. MM TPUBOAMMO Il PIBHSHHSA JO BUIJIIAY, 3PYYHOTO IS
OO0YHCIIeHb, 1 TOPIBHIOEMO PE3yJbTaTH 3 KOHTPOJBLHUMH pe3yibTaramu. Jam wmwu
MIPOBOJIMMO YHCEJIbHI EKCIIEPUMEHTH, K1 JEMOHCTPYIOTh, SIK IIBUAKICTH 301KHOCTI
HaIoro Oe3CITKOBOr0 KOy 3aJIEKUTh BiJ TOBLIMHU Ta AI€JIEKTPUYHOI MPOHUKHOCTI
MIIKIAIKA. XapaKTEePUCTUKHU PO3CISTHHS BUSBIISIOTH PE30HAHCH HA MOJAX IMiJAKJIaJKU Ta
Ha PEIITKOBUX MOJIaX CPYKTYPH B LIJIOMY SIK TIEPIOJIMYHOTO BIIKPUTOTO PE30HATOPA.
3roioM JOCIHIKEHHSI NOMKUPEHO Ha po3cissHHA H- 1 E-monsipu3oBaHuX MIIOCKHX
XBWJIb TOAIOHOIO PEINTKOI0, aje 3 TpadeHOBUMHM CTpiUKaMHU Ha TOBEpPXHI
nienekTpuuHoi migkiaanku. KomrmiekcHa MpoBIAHICTH TpadeHy MOJCIIOEThCA 32
J0MOMOT 00 KBaHTOBUX (popmyn Ky6o. Uepe3 ckiHUE€HHY MPOBIAHICTh TPAHUYHI YMOBU
Ha CTpIYKax MEpeTBOPIOIOTHCS HAa PE3UCTHMBHI YMOBH. Y Bumanaky H-momspusarii Ham
MMOBHOXBUJILOBUI O€3CITKOBUM KOJ 0a3yeTbCsl Ha aHAJTITUYHOMY HAmMiBOOEpPHEHHI, 110
BUKOPHUCTOBYE pO3B's130K 3a/1a4i Pimana-I'inbepra, — TakuM 4YHMHOM, BiH € MOAU(IKAIIIEIO
peryisipuzanii A 11eaqbHO MpOBIAHUX cTpiuoK. OnHak, y Bunaaky E-momspusaiii,
Mo u(DiKOBaHE PIBHSIHHA y MapHUX PsAlax, J0 SKOTO 3BOJUTHCS 3ajJada PO3CISHHS, HE
JI03BOJIsIE CKOpHUCTaTHCs MeTonoM 3anayi Pimana-I'inGepra ans moOynoBu 301KHOTO
ITOPUTMY. 3aMiCTh IIOTO MH PETYJISPU3YEMO II€ PIBHSIHHS 32 JOIIOMOTOI0 3BOPOTHOTO
nuckpetHoro rmepetBopeHHs Dyp'e. lle mpu3BOaUTE 10 MATPUYHOTO PIBHSIHHS
®penroapma 2-ro poay s aMILTITY rapMoHik DIioKe, 0 TapaHTye 301KHICTh KO .
3aBasku 30DKHOCTI OOYMCIIOBAJIbHY MOXMOKY MOKHA KOHTPOJIOBATH W 3MEHILIUTH

HaBITh O MAIIMHHOI TOYHOCTI. B 000X moysipu3aliisix eIeMeHTH MaTpHUIlh BKJIFOYAIOTh
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JUIIe eleMeHTapHl (YHKIli, 1 TOMYy Halll KOJW € He JIMIIC TOYHUMH, aje U IyxKe
€KOHOMIYHUMHU. BHKOPUCTOBYIOUM Takuii HaAIHHUN IHCTPYMEHT, MU IPOBOJUMO
JeTaNbHUIN YMCEIbHUN aHali3 PO3CISTHHS Ta MOTVIMHAHHS XBUJIb 1 30CEPEIKYEMO yBary
Ha B3a€MOJIIi M Pe30HaHCAMH Ha PI3HUX BJIIACHUX MoAaX. HoBUM siBHIIIEM, TOPIBHSIHO
3 PEWITKOI 3 1JeaibHO TMPOBIAHUX CTPIYOK, € IiCHyBaHHsA H-mosspuzoBaHux
IUTA3MOHHUX MOJ rpa)€HOBUX CTPIYOK. SKIIO yacToTa IMIa3MOHHOI MOJI CIIBIAJA€ 3
JacCTOTOI0  HAJIBUCOKOJOOPOTHOI  pENIiTKOBOI MOAM, TO Ma€ MICIE PEXKUM
€JIEKTPOMATHITHO 1HJAYKOBAHOI MPO30POCTI METAIOBEPXHI, KA JTOCTIIKYETHCSI.

Hacamkinenp y amceprarii JgociimpkeHo 1moporoBi ymoBu i1 H- 1 E-
MOJISIPU30BAaHUX MOJI JIA3€PHOTO BUIIPOMIHIOBAHHS rpa)€HOBOI CTPIYKOBOI PEIITKU Ha
miaknaani. Ha BiaMiny BiJ monepeaHbOro TYT MPHUITYCKAETHCS, III0 MaTepiai MiaKIa K
Mae€ MOCUJIEHHS, SIKE KOMIIEHCY€E BUIIPOMIHIOBAJIbHI M OMIYHI BTPaTH 1 103BOJISIE MOJaM
JOCSITTA TOpOry caMo30y/KeHHs. Mu IIykaeMo 4YacToTy 1 TOpOTOBE 3HAYEHHS
MOKa3HUKa MOCHJICHHS, crienudiuHe i1 KOXKHOI MOJAM, SIK BiacHi 3HaueHHA. [1]06 ix
3HAWTH, MU 3BOJMMO 3aJady IOJIA 10 MApHUX PSAIB A1 KOMIUIEKCHUX aMILTITY.
MPOCTOPOBHUX TapMOHIK DIIOKe, SKI MU AHATITHYHO PETYISIPU3YEMO 32 JIOTIOMOTOIO
Meroay 3anaudi Pimana-I'inbepra aisa H-mon 1 32 1OMOMOIror0 3BOPOTHOTO JIUCKPETHOTO
nepetBopeHHss @yp'e mis E-mon. OkpiM 1pOro, MU poO3ALISSEMO MOAM Ha MapHI 1
HEeMapH1 KJIaCU CHUMETPii BITHOCHO CEpEIWHU CTPIYKKM. B KOXKHOMY 3 BHUIAJIKIB I1I€
MPU3BOAUTL JI0 HECKIHYEHHOTO JIETEPMIHAHTHOTO PIBHSHHSA, 110  BIJNOBiAA€
MaTpUYHOMY PiBHAHHIO DpenroyibMa APyroro poay JJis BIACHUX 3HAYCHbB. 301TbIIICHHS
YyCiia YCIKaHHS MATPHUIll TapaHTye 30DKHICTh IIMX BEJIMYMH JI0 TOYHUX BIIACHHUX
3HaYeHb. Bi3yanizoBaHO MOPTPETH MOIIB YCiX MO/, 1110 BUBYAIOTHCS.

B po0oTi oTprMaHO HAacTyNHI HOBI HAYKOBI pe3yJIbTATH!

- YV BUNAAKy PO3CISIHHSA IUIOCKMX XBWJIb BHBUEHO MIBUJKICTH 301KHOCTI
BIJIMOBIIHAX YHCEJIIbHUX aJTOPUTMIB Ta ii 3aJ€XKHICTh BIJl PI3HUX TMapamMeTpiB
MIIKIAIKA W PENITKY, B TOMY YHCII Bij] TapaMeTpiB rpadeHa.

- Hamn po3paxyHKW TMOKa3ajdd ICHYBaHHS BHCOKOJOOPOTHHX pE30HAHCIB Ha

PEIITKOBUX MOJax 000X MOJspH3alliid, 1o TOoB's3aHl 3 aHoMamismu Penes, ane He
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ICHYIOTh Ha PEIITKax 3 i/IeaJlbHO MPOBIIHUX YM Ipad)eHOBHUX CTPIYOK, PO3MIMICHUX Y
BUTBHOMY TpocTOpi. Y Bumaaky H-monspusariii Mu BUBUMIIM PE30HAHCH HA TIA3MOHHHUX
Mojax, SKux Hemae y E-monsipu3artii

- YV Bumanky H-momspuzamii BHUSBICHO €(QEKT €JIEKTPOMArHiTHO I1HAYKOBaHOI
MPO30pPOCTi, SKWUH BUHUKAE 3aBASKA TIEPCHANTAMTYBAHHIO IIJJa3MOHHUX MOJ 3a
JIOTIOMOTOI0 XIMIYHOTO TOTEHIIaly TpadeHy. Sk moka3zaHo, MOXHa peajaizyBaTH ILeH
edeKT, KepoBaHUM eJNEKTPOCTATMYHUM YHHOM, Yy TEparepiueBoMy Jiama3oHi Ha
METaIoOBEPXHi 3 MIKpOpO3MipHUM TiepionoM. Lle Moxke OyTH KOPUCHUM IpU PO3pOOIl
HOBUX (UIBTPIB, MOJIYJATOPIB 1 TOIJIMHAYIB, SIKI BHUKOPUCTOBYIOTH TpadeH 3
MEePIOUYHOIO CTPYKTYPOIO M MOXKYTh OYTH MEpEHAIAIITOBAHI.

- B pamkax anHayizy MOpOTOBUX YMOB ISl BUIPOMIHIOBAHHS MOJI PO3IVISIHYTHUX
METAalOBEPXOHb K HAHOJA3€pIB MM PO3pPaXOBYBAJIM YAaCTOTH BHUIIPOMIHIOBAHHA 1
IIOPOTOBI 3HAYCHHS MOKA3HUKA IMOCHJICHHS MIIKIAJKH Ta BIAIIYKYBAJIM iXHI OJIMIKHI
MoJIst ISl PI3HUX KiaciB cuMeTpii. HalfHk4l moporu BUSIBICHO JIJISl PEIIITKOBUX MO/
KOYKHOT MOJIsIpU3alii 3 HEMapHOK CUMETPIEI0, TO/1 K HalKpally NepeHalallTOBaHICTh
JIeMOHCTPYIOTh H-momsipu3oBani mia3smMorHi Moau. Lli pe3ynbTaTd BIIKpHUBAIOTH IUISX
70 CTBOPEHHS HH3BKOIIOPOTOBUX MIKpO- ¥ HaHOJIa3epiB TepareprieBoro Ta

1H(paYepBOHOIO J1aNa30HIB, SIKI MOXKYTb M€PEHATAIITOBYBATHUCS.

Kniouosi cnoea. ctpiukoBa pemliTka, rpadeH, po3CiSsHHA XBWJIb, aHaJITUYHA

peryssipu3ailis, pe30HaHC, TIa3MOHHA MO/1a, PEIIiTKOBa MO/JIa, TIOPIT, HAHOJAa3epP.
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INTRODUCTION

Justification of the choice of research topic. In computational electromagnetics,
Important place is occupied by the study of electromagnetic wave scattering from two-
dimensional, i.e., single-periodic, diffraction gratings. Among the most important
shapes of gratings, besides of the periodically grooved metallic and dielectric interfaces,
e.g. echelette, and periodic wire grids, one can frequently see arrays of long and thin
strips located on the surface of flat dielectric substrates. This is because of several
reasons. First, various sophisticated technologies enable fabrication of such strip
configurations - printing, wet and dry deposition, sputtering, molecular-bean epitaxy,
and others. Secondly, this is cheaper and better controlled than cutting the grooves or
winding the wires on a frame. The spacing, or periodicity, is necessarily comparable or
smaller than the wavelength — this means that today, when nanotechnologies routinely
work with nanoscale objects, it is possible to fabricate on-substrate gratings of
nanometer-wide gold or silver or graphene strips or other flat shapes. This opens many
exciting opportunities for the development of novel and efficient wave-forming devices,
components and sub-systems of the terahertz (THz), infrared and visible light ranges.

Still, nanotechnologies are very expensive — so expensive that in Ukraine, there is
no any laboratory or industry, which can fabricate nanoscale photonic circuits or even
much simpler objects such as patterned graphene. This circumstance calls for reliable
pre-fabrication modeling of the micro and nano-scale configurations in general and
various strip gratings in particular. As it is obvious, to be reliable and predictive, such
modeling must be based on the full-wave (i.e. rigorous) formulations of the wave-
scattering problems and lead to the convergent numerical algorithms.

By today, the best developed chapter of the theory of wave scattering from strip
gratings concerns the infinite gratings of PEC strips. This is because since the 1950s to
the 1990s the main application area was the microwave circuits, where the metals can

be safely considered as perfect conductors. Apart of many approximate techniques, the
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main achievements here are associated with the development of two methods: the
analytical regularization or semi-inversion based on the Riemann-Hilbert Problem
(RHP) solution and the numerical quadratures or Nystrom method. This is because the
algorithms developed on the basis of these methods have mathematically guaranteed
(i.e. proven by theorems) convergence and thank to this controlled accuracy.

Still, a general trend in electromagnetic wave technology is the development of
more and more high-frequency ranges, in particular, terahertz and infrared. However, in
these ranges, the PEC model is not suitable even for scatterers made of noble metals
such as silver or gold. Besides, new ‘“2-D” materials of single-atom thickness have
emerged, such as graphene, which is also imperfect conductor [1,2]. Moreover, it is
known that the surface impedance of graphene is a complex quantity with a negative
Imaginary part. This leads to the resonant effects in the scattering and absorption of
waves by graphene objects due to the excitation of surface plasmon resonances, which
have a wide range of practical applications [3-9]. As all resonances, they appear thanks
to the plasmon modes (PM), which have very small radiation losses but moderate ohmic
losses. When the H-polarized waves are scattered by the graphene strip gratings, PM
resonances are excited. Thus, for example, in the development of biosensors, plasmonic
effects can significantly enhance the ability to detect and identify biological substances
by increasing the intensity of fluorescence. Moreover, thanks to modern technologies,
micro- and nanoscale graphene strips, disks and other flat shapes (i.e. the patterned
graphene) are incorporated into many novel THz and infrared devices.

Note that the plasmon resonances on the noble-metal particles and strips, in the
visible-light range, have long history of analysis and applications in bio and chemo-
sensors [10-12]. Still, their use has been always corrupted by the considerable ohnic
losses, which spoil the Q-factors. In contrast to metals, graphene displays plasmon
effects at two orders lower frequencies and has at least by order lower losses.

Due to the ultra-small thickness, even if lying on dielectric substrates, periodic
arrays of such flat shapes are customarily called metasurfaces. The gratings made of

hundreds or thousands of graphene micro- and nano-strips are attracting special
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attention in the development of refractive index sensors and absorbers [13-24]. This is
closely related to the recently discovered phenomena of anomalous reflection,
transmission, and emission of light, as well as near-field enhancement, giant Kerr and
Faraday effects and some others. In the most general case, such phenomena have the
form of asymmetric Fano-type resonances and are observed near the so-called Rayleigh
Anomalies (RA) of the corresponding infinite gratings. Within the past 10 years, all of
them have been linked to the so-called lattice-mode (LM) resonances [24]. In the
literature, one can find contradictory statements on the nature of LMs — they are
frequently mixed up with RAs and, if traced on arrays of noble-metal particles, with
exotic forms of PMs. These resonances have by orders higher Q-factors that the PM
resonances that makes them very attractive for the sensing applications, however,
entails great difficulties in their accurate modeling. Indeed, to study the ultrahigh-Q
resonances, one needs very fine numerical algorithms, able to deliver many correct
digits in the obtained results. This makes usual commercial codes, such as COMSOL,
HFSS, Microwave Studio, or FEKO, essentially pointless — they are not based on the
convergent algorithms and provide results with low accuracy of a few first digits.

Thus, the task of studying the resonance effects in the scattering and absorption of
the H- and E-polarized plane waves by infinite on-substrate graphene strip gratings,
using the algorithms with guaranteed convergence and controlled accuracy is timely and
relevant. Still, to study them accurately, one cannot simply use the MAR techniques
developed earlier for the PEC strip gratings because imperfect conductivity changes the
boundary conditions on the strips to the so-called two-side resistive conditions.

As discussed in [20], in the H-polarization case such a change is only a smooth
perturbation of the PEC condition — therefore, the MAR-RHP technique can be adapted
to treat this case. In contrast, in the E-polarization case this change is a singular
perturbation to the PEC condition and the RHP technique becomes inapplicable.
However, there is a good side — the non-zero impedance of graphene plays the role of
the regularizing parameter. Thanks to this circumstance, the analytical regularization is

achieved by the application of the Inverse Discrete Fourier Transform. These techniques
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are known since [25], however, only for the imperfect strip gratings suspended in the
free space. Therefore, it is necessary to modify these techniques and adapt them to the
on-substrate grating case. This is performed in the thesis. Having such a trusted and
efficient computational instrument, we can conduct systematic numerical investigation
of the scattering and absorption, focusing our study on the resonances on PMs, their
electrostatic tunability, and revealing the characteristics of ultrahigh-Q resonances on
LMs both in the H and E-polarization cases.

Additionally, casting a wave scattering problem to a Fredholm second kind matrix
equation opens the way for the accurate analysis of the so-called “natural modes” of the
considered scatterer as an open resonator. The complex-valued natural mode
frequencies are then the roots of the determinantal equation. The Fredholm theorems tell
that such frequencies are discrete in the whole complex domain. They depend
continuously on the other parameters and can appear or disappear only at the branching
points and at infinity.

This circumstance gives an interesting idea to investigate the natural modes of the
graphene-strip grating lying on dielectric substrate, from new point of view — namely, to
consider them as the laser modes at the threshold of stationary emission. Here, the
lasing is understood as existence of real-frequency modes of the open resonator —
because the residue in such a pole is a non-attenuating in time outgoing electromagnetic
wave. This implies assuming the presence of the active region, i.e. a domain filled in
with the gain material.

As can be seen from the literature, within the past several years, one of the most
promising trends in the development of micro and nanoscale lasers is associated with
arrays of noble-metal particles or strips [26]. Although this is not always well
understood and acknowledged, the working modes in such lasers are the LMs.
However, they have rather high thresholds that is understandable because of the lossy
nature of metals. Here, taking into account that the graphene has lower losses than the
metals, it is reasonable to suggest a replacement of noble-metal elements of arrays with

the graphene ones. Guided by these considerations, we undertook the investigation of
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the threshold conditions (i.e. the emission frequencies and associated threshold values
of the gain-material index) for the natural modes of the graphene-strip grating lying on
the gain-material substrate.

The object of research is the electromagnetic field scattered and absorbed by the
infinite graphene strip grating on dielectric substrate and emitted by such a grating on
non-magnetic gain-material substrate.

The subject of the study is the resonance effects in the scattering and absorption
by the graphene strip grating on dielectric substrate that appear due to the natural modes
of such a periodic open resonator, and the threshold conditions for these natural modes
in the case of the gain-material substrate.

The goals of the work are two-fold:

- to study, using the convergent algorithms, the resonance effects, which arise due
to the natural modes, in the H- and E-polarized electromagnetic wave scattering and
absorption by graphene strip grating on passive dielectric substrate,

- to study, using the convergent algorithms, the threshold conditions for the H- and
E-polarized natural modes of graphene strip grating on the gain-material substrate.

To achieve these goals, the following tasks are considered:

—  Derivation of the Fredholm second kind matrix equations for the scattering and
absorption of plane wave by graphene strips grating on substrate in the case of the H-
and E-polarization,

—  Writing and testing codes and validating them by comparison with results of the
other convergent numerical methods, when available,

—  Study of the error behavior depending on the matrix truncation order to confirm
convergence,

— Use of developed codes for the analysis of the scattering and absorption
characteristics of the considered graphene-strip metasurfaces, especially their tunability
with graphene’s chemical potential,

—  Derivation of approximate formulas for the frequencies and Q-factors of the

plasmon, lattice and dielectric substrate modes,
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— Adapting the derived equations and codes to the case of substrate, maid of the
gain material. Combining these equations with iterative search of the roots of
determinantal equations,

— Systematic full-wave analysis of threshold conditions for the modes of graphene
strip grating on gain-material substrate in the cases of the H- and E-polarizations.

On the choice of parameters. In the numerical analysis, we had decided to focus
on metasurfaces featuring strips made of graphene with the strip width, grating spacing,
I.e. period, and substrate thickness all measured in micrometers. This is because in such
case all the resonances are found in the THz range, which is actively developed today.
These metasurfaces can be viewed as composite periodic open resonators. They are
expected to exhibit strong frequency selectivity due to the interplay of three distinct
natural mode types: low-Q slab modes (SM), moderate-Q plasmon strip modes (PM),
and ultrahigh-Q lattice modes (LM), which do not exist in the absence of the substrate.

In view of the current trends in micro and nano optics and photonics and gaining
on the accurate analysis of the wave scattering and absorption, we had decided
additionally to turn to the equally accurate analysis of the lasing threshold conditions for
the plasmon and non-plasmon modes of graphene strip grating on the gain-material
substrate, in the H and E-polarizations. As the gain materials are rare in the THz range
and better known in the infrared, here we take the strip dimensions, in part of analysis,
in nanometers — this shifts the plasmon-mode resonances to the far-infrared range.

In the numerical analysis, our objective is to identify the most interesting and/or
optimal configurations for the graphene-strip metasurfaces. It involves a systematic
numerical analysis of various promising cases, exploring how parameters like period,
substrate thickness, and especially the chemical potential impacts the metasurfaces’
electromagnetic characteristics. The latter parameter, being not restricted in theory, is
known to vary from zero to 1 eV with today’s best graphene samples. These samples
show the electron relaxation time up to 0.5 ps. Hence, we use these values in our
computations. Besides, we routinely assume that the room-temperature conditions are

maintained, with 300 K temperature.
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These mentioned above tasks are solved in 4 chapters of the work.

The first chapter discusses briefly the phenomenon and concept of diffraction
gratings in electromagnetic wave physics and engineering, as well as some of their
applications and the associated modelling problems. Then, one can consider the basic
problems of wave diffraction on flat gratings of PEC and graphene strip on a dielectric
substrate, namely the wave scattering and eigenvalue problem. Here, essential details
are given for the methods of the scattering theory used in this thesis in the analysis of
imperfect strip gratings. The last thing considered in this chapter, but no least important,
Is the Kubo description of the graphene conductivity and surface impedance.

The second chapter is devoted to the auxiliary problems of the plane-wave
scattering from an infinite grating of the PEC strips on dielectric substrate. This implies
mathematical formulation of BVP, basic equations, convergence, validation, and
numerical experiments focused on the LM resonances in such a configuration.

The third section deals with the scattering and absorption of the H- and E-
polarized plane waves by infinite flat grating of graphene strips lying on dielectric
substrate. This implies mathematical formulation of BVP, basic equations, convergence,
validation, and numerical experiments focused on the tunability of the PM resonances
with the chemical potential and on the LM resonances. Besides, we study the effect
called electromagnetically induced transparency where both a plasmon mode and a
lattice mode are involved.

The forth chapter presents the analysis of the H and E-polarized lasing modes of
the infinite flat grating of graphene strips on the active substrate. The substrate material
Is assumed to have gain that offsets the radiation and ohmic losses and allows the modes
to reach the lasing threshold. We look for the frequency and the gain index threshold
value, specific to each mode, as eigenvalues.

The obtained results are summarized in Conclusions and Recommendations.

Research methods. The research methods include the time-harmonic wave
scattering theory, i.e. the 2-D boundary value problems (BVP) of classical

electromagnetics, and the theory of associated eigenvalue problems. These BVPs
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consist of the following conditions: (1) the Helmholtz equation, (Il) the graphene
boundary condition on the strips and the tangential-components continuity conditions
across the material boundaries, (I1l) the radiation condition, (IV) the local power
finiteness condition (the same as edge condition). In the wave-scattering problems,
conditions (1)-(1V) ensure the uniqueness of the solution at any real-valued frequency.
They are inherited in the eigenvalue problems, if these problems are modified to access
the lasing, which is understood as existence of the real-valued natural frequencies. As
known, this is possible only in the presence of the active regions, i.e. domains filled in
with the gain materials. Such materials are modeled as “active dielectrics” via the use of
the negative imaginary part of the complex-valued permittivity or refractive index.
Further, the conductivity of the graphene is characterized with the aid of the known
Kubo formalism based on the quantum theory. Due to this fact, the whole treatment
becomes semi-classical, i.e. a classical electromagnetic BVP combined with quantum
description of one of involved materials.

To build a robust and meshless full-wave algorithm, we use the Floquet
expansions, transform each scattering problem into a double series equation, and apply
a MAR approach. In the H-polarization case, our treatment is based on the RHP
technique, adapted to the resistive boundary conditions on the strips. In the E-
polarization case, we use the Inverse Discrete Fourier Transform. In each case, the
resulting infinite matrix equations are of the Fredholm second kind type. Thanks to this,
Fredholm theory guarantees the convergence of their numerical solutions, if the matrix
size is taken larger. This allows us to calculate wave scattering and absorption
characteristics with controlled accuracy.

In the eigenvalue problems, they are reduced to the determinantal equations
generated by the same matrix operators as in the scattering problems. Here, the
Fredholm theory guarantees the convergence of the approximate root to the exact ones,
if the matrix size is taken larger.

Scientific novelty of obtained results. Modification of the RHP technique to the

resistive boundary conditions on the strips in the H-polarization case, and the IDFT
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technique, used in the E-polarization case, have been known since 1998 when the paper
[25] was published. Later, these techniques were applied to the scattering from the
graphene strip grating in the free space [20]. However, they have not been applied to the
analysis of the graphene strip gratings lying on top of dielectric substrate. As on-
substrate strip configurations are the most frequent in real life, this lack of accurate
analysis and trusted results appeared too significant to be ignored.

Therefore, in terms of the novelty the center of gravity in this dissertation is in the
accurate analysis of the physics of the wave scattering and natural-mode phenomena.

The following new results have been personally obtained by the author:

e The rate of convergence of the resulting meshless numerical algorithms have been
demonstrated and validation of the computed results has been performed by the
comparison with data obtained using another convergent technique, MAR-Galerkin. As
we have shown, thicker and higher dielectric permittivity substrates request solving
larger matrices for the same accuracy. This is the consequence of the fact that the
inverted part is the static limit of the grating-on-interface problem.

e Using this accurate and efficient modelling tool, we have analyzed the interplay, in
the range from zero to 10 THz, of the scattering and absorption resonances, caused by
the H-polarized natural modes of three types and different Q-factors: SMs of the
substrate, PMs of the graphene strips, and LMs. Remarkably, the LM Q-factors (if the
grating is infinite), grow up infinitely if the substrate gets thinner or its contrast with
host medium vanishes.

e \We have demonstrated that thanks to the tunability of the H-polarized plasmon
modes with the aid of graphene’s chemical potential, it is possible to realize an EIT.
This can be useful in the design of novel tunable filters, modulators and absorbers that
use periodically patterned graphene.

e Our computations have confirmed the presence of the high-Q resonances on LMs,
in the either polarization, that do not exist on the strip grating placed in the free space.

In the E-polarization case, we have derived analytical expressions for the complex
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frequencies of LMs. These expressions, for the first time, demonstrate how the LM
poles hide to the non-physical sheet of the RA Riemann surface and migrate to the
physical sheet thanks to finite-thickness substrate.

¢ \WWe have accurately studied the threshold conditions for the modes of the graphene
strip grating on the gain-material substrate. As we have found, the modes split into two
classes according to the symmetry or anti-symmetry relatively to the strip middle line.
The lowest thresholds are found for the LMs in each symmetry class, while the best
tunability in frequency, within a factor of 2 to 3, is demonstrated by the PMs.

Practical value of obtained results.

The practical significance of the developed algorithms is seen in their ability to
provide trusted modeling of the performance of corresponding sensors, absorbers and
filters based on the graphene strip gratings in the THz and infrared frequency ranges.

The analysis of the PMs electrostatic tunability and their hybridization with LMs,
accompanied with the effect of electromagnetically induced transparency, helps
establish safe frequency limits in the design of frequency-tunable devices.

As shown, the LM resonance effects are so fine that their accurate characterization
calls for adequately refined numerical approaches. Indeed, even if the substrate is
moderately thin, say, has the thickness of 1 um, the LM Q-factors can reach 10° so that
the numerical solutions must deliver 6 or more correct digits. Such high accuracy is not
accessible with existing today commercial codes. In contrast, the MAR-based codes can
easily provide this accuracy, controlled by the matrix truncation order.

The results related to the threshold conditions for the modes of the graphene-strip
gratings on gain-material substrates can be used in the pre-design and evaluation of low-
threshold tunable nanolasers in the THz and infrared frequency ranges.

Thanks to the combination of high speed and accuracy, the developed codes can be
used as the engines in the numerical multi-parametric optimization routines that are
based on the local (e.g. gradient-type) and global minimization of target functions.

Personal contribution of the author. The main results presented in this thesis
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have been obtained by the author himself. In the case of papers with co-authors [1A-
16A], the author’s contribution consists in deriving the basic equations, developing the
numerical algorithms, writing and testing the codes in Matlab environment, as well as in
the systematic calculation of the results obtained, preparation of the publication drafts,
and presentation of results at international conferences.

Dissemination of results. The results of the work were presented and discussed at
the scientific seminar of IRE NASU (Prof. P. M. Melezhyk).

Besides, they were presented at the following international conferences:

—IEEE Ukrainian Conferences on Electrical and Computer Engineering
(UKRCON), Lviv, 2019, 2021;

— IEEE International Conference on Microwaves, Communications, Antennas, and
Electronic Systems (COMCAS), Tel Aviv, 2019, 2021,

— IEEE International Conference Ukrainian Microwave Week (UKRMW),
Kharkiv, 2020, 2 presentations;

— IEEE International Conference on Information and Telecommunication
Technologies and Radio Electronics, Proceedings, (UkrMiCo) Kyiv, 2021;

— European Microwave Conferences (EuMC), Milan, 2022, Berlin, 2023;

— IEEE International Conference on Electronics and Nanotechnology (ELNANO),
Kyiv, 2022;

— International Conference on Applied Electromagnetics and Communications
(ICECOM), Dubrovnik, 2023.

Publications. The results of research have been published in 16 refereed papers
indexed in Scopus, including 5 papers in international journals [A1-A5] and 11 papers
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CHAPTER 1
LITERATURE REVIEW AND RESEARCH METHODS

1.1 Diffraction gratings in electromagnetic wave physics and engineering

Diffraction gratings (DG), fundamental in optics and spectroscopy, play significant
role in the analysis and shaping of electromagnetic waves. These optical devices were
first proposed by D. Rittenhouse in [27]. They consist of a surface etched with an array
of closely spaced, parallel grooves or slits. The distance between these slits, known as
the "grating spacing™ or period, is typically on the order of the wavelength of the
incident light. When electromagnetic waves, such as visible light, encounter DG, they
are scattered from the grating's periodic structure.

As light passes through the slits of DG, it undergoes a phenomenon known as
diffraction. This process occurs because DG acts as an obstacle to the incident waves
and the periodic structure causes the waves to interfere with each other. The interference
results in the light being deflected or spread out into its constituent colors or
wavelengths, creating what is known as a spectrum. This dispersion is a consequence of
the wave nature of light and is described by Huygens' principle, which explains how
each point on the DG surface can be thought of as a source of secondary waves.

The angular dispersion of the light is a key characteristic of a DG and depends on
the wavelength of the incident light and the grating periodicity. This dispersion is
governed by the grating equation, which was developed by A.-J. Fresnel in the early
19th century. The grating equation relates the angle, at which the different wavelengths
of light are diffracted, to the DG parameters, specifically the period and the order of
diffraction. Higher diffraction orders correspond to different angular directions for the
dispersed light.

The concept of DGs dates back to the early 19th century, however, it is widely
considered that it was J. von Fraunhofer who made groundbreaking contributions to
their development. He invented the spectroscope, a device that employed DGs,

revolutionizing the field of spectroscopy. His innovations allowed for the precise
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measurement and analysis of spectral lines in the light emitted or absorbed by various
materials. This marked the inception of DG applications in scientific research, where
they became indispensable tools for understanding the composition, temperature, and
properties of materials by splitting the light spectrum into its distinct components.

DGs have numerous applications in the fields of physics and engineering related
to electromagnetic waves. Here are some specific applications:

Spectral filters: DGs are used to create spectral filters or monochromators that can
isolate specific wavelengths or frequency ranges. These filters have applications in
remote sensing, optical and microwave communication, and laser-based technologies
where precise wavelength control is crucial.

Polarizers. Many types of DGs demonstrate remarkable polarization selectivity,
I.e. transmit or reflect the waves of only one of two orthogonal polarizations or electric-
field vector directions. In particular, this is true for a DG of metal wires or strips with
the period smaller than the length of microwaves, as demonstrated by H. Hertz.

Spectral analysis: In physics and engineering, DGs are employed for detailed
spectral analysis of electromagnetic waves. They help in identifying and quantifying the
spectral lines, which are characteristic of different chemical elements and materials.
This information is vital in various research and industrial applications. Spectrometers
with DGs are critical tools in chemistry, astronomy, and materials science.

Interferometry: In fields like optics, THz quasi-optics, and radio astronomy,
interferometers use DGs to measure the interference patterns produced by
electromagnetic waves. This technique allows for high-precision measurements and is
essential for diverse applications such as plasma diagnostics in Tokamak fusion
machines and radio telescope calibration.

Holography: In the field of holography, DGs play a key role. They are used to
create holograms by splitting laser light into various beams, which interfere to form a
three-dimensional image. Holography is utilized in art, security, and data storage.

Optical communication: DGs are integral to the wavelength-division

multiplexing in optical communication systems. Wavelength-division multiplexing
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allows multiple data channels with different wavelengths to be transmitted
simultaneously over optical fibers, greatly increasing data capacity and speed.

Vacuum electronics: several important types of microwave sources, such as
traveling-wave tubes and orotrons, use DGs as components that slow down the
electromagnetic wave phase velocity that is needed to provide efficient interaction with
non-relativistic electron beams.

Antennas and radar: In microwave and millimeter-wave engineering, DGs can
be used in phased-array antenna design to control the radiation pattern and hence
improve the directionality of electromagnetic wave transmission and reception. They
are also used in radar systems to analyze and manipulate radar signals.

Lasers: distributed-feedback laser systems incorporate DGs as the elements that
provide light emission from the configurations without classical or Bragg-type mirrors.

These are just a few examples of how DGs are essential tools in physics and
engineering for working with electromagnetic waves. Researchers and engineers
continue to explore innovative ways to use DGs to advance our understanding of
electromagnetic wave behavior and develop new technologies.

Here are some examples of problems related to different types of DGs in the
physics of electromagnetic waves:

Diffraction efficiency optimization: Given a specific wavelength of incident
wave, what are the parameters (such as period, material, and incidence angle) that
maximize the diffraction efficiency of a DG, i.e. the intensity of a given diffraction
order? This is essential for designing high-performance spectroscopy instruments.

Blazing angle calculation: For a specific DG, how can you calculate the blazing
angle, which is the angle at which maximum diffraction efficiency occurs? Solving this
problem is crucial in the design of monochromators and spectrometers.

Grating dispersion: Given the properties of a DG, how can you calculate the
angular dispersion, which describes how different wavelengths spread apart when
diffracted? This is important in designing systems for separating spectral lines in

spectroscopy and for providing narrow-bad operation of radar and comunications.
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Design of grating-based optical filters: How can you design a DG-based optical
filter to selectively transmit or reflect specific wavelengths while blocking others? This
problem is relevant in creating filters for various applications, including imaging and
laser protection.

Diffraction grating polarization effects: How do DGs affect the polarization
state of diffracted light? Understanding and mitigating polarization effects are crucial in
applications where maintaining or manipulating polarization is essential.

Ultra-high resolution spectroscopy: What are the limitations and challenges in
designing DGs for achieving ultra-high spectral resolution in spectroscopy? Solving this
problem is pertinent in advanced scientific research where fine spectral features need to
be resolved.

“Anomalous phenomena” linked to the lattice-mode resonances: How one can
accurately determine the frequencies and Q-factors of such resonances of various DGs?
They can be used in the design of sensors and filters with improved performance.

These problems encompass a range of challenges in the physics of electromagnetic
waves when dealing with DGs. Researchers and engineers work on solving these
problems to improve the performance of various optical systems and advance our
understanding of electromagnetic wave behavior.

Some of the above tasks will be partially considered in this dissertation. In
particular, the resonance phenomena and polarization selectivity of graphene-strip
gratings are discussed, which is relevant to their application in sensors, filters, antennas,

and lasers.

1.2 Problems of wave scattering from flat strip gratings

It should be noted that it was R. Wood in the beginning of the 20™ century who
noticed that the light is “anomalously” (i.e. with much larger or smaller intensity)
diffracted by DGs at certain wavelengths [28]. These wavelengths gave rise to the term

“Wood Anomalies.” Soon after that, Lord Rayleigh built the foundations of the wave
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theory of DGs based on the Floquet expansions [29]. He found that some of the Wood
Anomalies could be explained via the “passing over horizon” of the diffraction orders —
such wavelengths obtained the name “Rayleigh-Wood Anomalies” or simply “Rayleigh
Anomalies” (RA). They are caused solely by the periodicity and depend on the grating
period-to-wavelength ratio and the incidence angle. Still, other Wood Anomalies did not
follow Rayleigh’s rule and were linked to the fine structure of the grating period, also
called “elementary cell” [30].

Important step ahead in the understanding of the electrometric characteristics of
DGs was made by A. Hessel and A. Oliner who considered the plane-wave reflection
from a periodically modulated impedance plane [31]. In this work they discovered sharp
resonances near the RA frequencies. However, they did not understand that these
resonances were caused by the complex poles of the field function; they simply did not
notice these poles, which correspond to the LMs.

It should be noted that the theory of wave scattering from various DGs have been
developed in the 1960s-1990s by many researchers [32-35]. Among them, a remarkable
place is occupied by the books by the Kharkiv scientists [32-34]. Zero-thickness strip
gratings are only one of many known DGs - they are briefly reviewed below.

The scattering of plane waves from the infinite flat grating made of PEC strips is a
canonical problem of computational electromagnetics since the pioneering paper of H.
Lamb over a hundred years ago [36]. Within this time, two mathematically grounded
approaches that lead to the algorithms possessing the convergence have been developed.
The first of them is based on the method of analytical regularization (MAR) and uses
explicit inversion of the most singular part of the problem (this is its static part). The
inversion can be performed in several equivalent ways.

According to one of them, MAR-Galerkin, the problem is reduced to a singular
electric-field SIE for the strip current and then discretized using a Galerkin projection
on the weighted Chebyshev polynomials, which form the set of orthogonal
eigenfunctions of the IE static part [37,38]. The other way is to reduce the problem to

the DSE for the amplitudes of the Floquet harmonics. In the early 1960s, it was found
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that the DSE static part is equivalent to the RHP method [39], which can be solved
analytically. In each case, the resulting infinite-matrix equation is a Fredholm second
kind equation. This guarantees the convergence in the sense that the larger the matrix
truncation order, the closer the solution to exact one, in a certain norm.

As a numerical alternative to MAR, the second approach has been developed since
the 1970s. It is starting from the log-singular or hyper-singular IE as well, however, the
numerical solution, with guaranteed accuracy, is obtained via a Nystrom-type
interpolation. Here, unknown current function is approximated with a polynomial, the
coefficients of which are found using the numerical quadratures [40,41]. Then, the
resulting matrix equations possesses so-called strict diagonal dominance, which
guarantees the convergence.

The MAR solutions for the PEC-strip gratings in the free space were further
adapted to treat the imperfect gratings, made of resistive, impedance, and dielectric or
metal strips [25,42-45]. This needed the use of the impedance boundary condition or the
generalized boundary condition. As a result, the MAR techniques had to be modified
and supplemented with IDFT for new type of DSE or its SIE analog. Later, the resistive
strip grating solution was adapted to the graphene-strip grating in the free space [20].

Still, in the practical situations strip gratings are most frequently placed on a
dielectric layer as a substrate. In the presence of a substrate, the corresponding
modification of the mentioned above approaches and methods needs some analytical
work however is always possible. This is because the singularities (related always to the
static parts) remain the same. On the one hand, the MAR-RHP technique was extended
to on-substrate PEC strip grating by Tretyakov [46], however, this work did not have
any numerical results and, generally, is not directly suitable for programing. A
numerical example can be found in the book [33], however, without the equations.

On the other hand, the MAR-Galerkin was applied to the on-substrate PEC-strip
gratings by A. Matsushima [47,48] (in Fourier-transform domain) and J. Volakis [42]
Cho [49] and Medina [50,51] and R. Hwang [52]. In [53,54], considered with AR-RGP
were PEC-strip grating on more complicated material substrates. In these works,
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extremely high-Q resonances were reported near to RAs, however, they remained
unexplored.

As a consequence, when studying the auxiliary for us case of the plane-wave
scattering from an infinite grating of PEC strips, located on the interface of a dielectric
substrate, we had to write the basic equations of MAR-RHP technique “from scratch.”
Still, this was a necessary stage as it allowed us to validate the codes by a comparison
with the reference results, obtained by MAR-Galerkin technique for PEC strips [51].

Unfortunately, there are no reference data for the graphene-strip grating case. Still,
such data, obtained with MAR-Galerkin technique, is available for the permanent-
resistivity strip grating on substrate [42]. Note that the data obtained with COMSOL
[55] cannot be used as a reference because the authors admit that they had troubles with
the convergence.

As mentioned, the main goals of the thesis are related to the wave scattering and
emission by the graphene-strip DG on dielectric substrate.

Recent progress in nanotechnologies has attracted wide attention to graphene as a
novel material, able to provide new functionalities to devices and systems, which use
electromagnetic waves, especially in the terahertz, infrared, and visible-light ranges.
This is explained by the fact that graphene is not only well conductive but has the
conductivity tunable with the aid of DC electric biasing [1-4]. Besides, it can support
surface plasmon guided wave with electric field, orthogonal to its surface, in the
terahertz and infrared ranges, i.e. at two orders lower frequencies than the noble metals
[16,17]. These properties make graphene very promising in the design of novel tuneable
antennas, filters, sensors, and absorbers, to mention only a few possible devices.

Today, the focus of research into the applications of graphene in electronics and
photonics shifts from wide-area sheets to the patterned configurations in the form of
strips, disks and other flat forms [4,6]. Here, one of the most frequently considered
configurations is a grating of parallel graphene strips [3,6-8]. In principle, such strips
can be fabricated without substrate (suspended in air) that even improves their chemical

stability [56]. However, typically patterned graphene configurations are located on the
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surface of flat dielectric substrates. For instance, chemical vapor deposition (CVD)
technology is able to produce a controlled number of high quality graphene monolayers
on large area of high-refractive index substrate. It was used in [8] for manufacturing of
double-layer gratings of nanosize, in width, CVVD-graphene strips on a substrate of
polished float-zone silicon, for infrared sensing. To pattern the strips out of graphene
sheet, 100-keV electron beam lithography and etching in oxygen plasma were applied.

Still, the mentioned above technologies are expensive. In order to reduce the cost
and the time of research and development, scientists use the preceding modelling of the
electromagnetic properties of the patterned graphene. Here, of crucial importance is the
availability of the surface conductivity of non-patterned zero-thickness graphene in
analytical form, known as Drude model or more sophisticated Kubo formalism [16].
Still, several aspects are non-trivial for an accurate modelling and must be fully
accounted for: extremely small (1-2 nm) thickness of graphene, its finite and frequency-
dependent conductivity, presence of sharp edges, and presence of dielectric substrates
and superstrates. Comparative reviews of techniques, employed for such a modelling,
can be found in [57] together with discussions of their limitations. In particular, it is
emphasized that the Fourier-expansion technique (also known as “rigorous coupled-
wave analysis”) is divergent in the H-polarization case [25], while commercial codes
require introduction of nanoscale thickness of graphene that entails unnecessarily fine
meshing and prohibitively large computation time [19]. Two analytical-numerical
approaches stand out in this area: the method of SIE solved using the Nystrom
discretisations [22,58,59] and the MAR-Galerkin applied to SIE or to other equivalent
equations, casting them to the Fredholm second-kind matrix equations [24,60].

As mentioned above, our goals are related to the analysis of electromagnetics of
graphene-strip DG on the substrate. Here, at first we have to adapt the MAR-RHP and
MAR-IDFT techniques to the wave scattering by a grating of flat graphene strips lying
on a flat dielectric substrate. Such a modification for the graphene strips has not been
done; it has also a great advantage before MAR-Galerkin technique in the absence of

numerical integrations needed to fill in the matrix equation.
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Second, with the aid of such a trusted and efficient instrument, we can accurately
analyze the fine resonance effects. In the H-polarization case (magnetic field being
parallel to the strips), we can study the resonances on PMs of graphene strips that are
electrostatically tunable and appear at low frequencies. Note that these resonances are
already exploited in the mid-infrared bio and chemo-sensors [3,8]. In the E-polarization
(electric field being parallel to the strips), no such modes exist.

Besides, in the both polarizations, we can focus our research on the so-called LM
resonances, which do not exist on suspended strip gratings.

The LMs, which are in the focus of our study, need a short introduction. They exist
in nearly all periodic open resonators, however, have received no attention or been
overlooked until the 2000s; sometimes, they have been misinterpreted because of their
ultra-large Q-factors and extreme closeness to the RAs. Most probably, they were first
time revealed in [31] on the periodically modulated impedance plane, however, they
were largely forgotten later. Now, they are intensively studied [24,58-68] and find
important applications. This is because they are found responsible for several
remarkable effects, greatly enhancing them due to huge Q-factors [65-68]. As known, if
the periodicity is vanishing, their complex-valued natural frequencies approach the
purely real-valued values and hence their Q-factors tend to infinity. As a consequence,
accurate quantification of the ultra-fine LM resonances is a huge challenge for the
existing commercial codes. In contrast, our MAR-RHP based full-wave meshless

algorithm is fully adequate to that task.

1.3 Methods of diffraction theory used in the thesis

Essentials of MAR. Recent progress in the fields of nano-optics and photonics,
driven by innovations in materials like graphene, have sparked significant interest in
developing robust electromagnetic solvers for applications in THz and infrared
technologies. Among these solvers, IE formulations and associated discretization

techniques have gained prominence. They offer the advantage of automatically
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satisfying radiation conditions and often defining unknown functions within finite
supports. However, one can see that results obtained using commercial software
typically require post-validation, comparing them against closed-form expressions,
experimental measurements, or asymptotic solutions. This is necessary because, in
general, it is impossible to establish the existence of a solution for arbitrary IE or the
convergence of arbitrary discretization schemes beforehand [69,70].

An exception to this rule is the Fredholm second-kind IE, for which the
convergence of discretization schemes that keep the compressing nature of IE operator,
can be confidently stated, and truncation errors can be controlled. Examples are the
Magnetic Field IE for closed PEC smooth objects and the Muller Boundary IE for
dielectric smooth objects.

A Dbroad class of wave propagation, radiation, and scattering problems, especially
those involving open scatterers, objects with wedges, or planar surfaces, can be
equivalently reformulated as singular IE. However, the Fredholm theory does not apply
in these cases. This challenge can be surmounted through the use of the MAR. MAR
encompasses a family of methods that transform first-kind weakly singular and various
strongly SIE into second-kind integral or matrix equations, to which the generalized
Fredholm theory, as advanced by Steinberg, is applicable. The term "Method of
Analytical Regularization™ was first introduced in Muskhelishvili's 1953 book 'Singular
Integral Equations' and is sometimes interchangeably called the semi-inversion method.
The fundamental concept is relatively straightforward yet intriguing: identify an
appropriate operator that encapsulates the most singular aspect of the integral operator
in question and conduct its analytical inversion. This operator can be chosen in various
ways, depending on the specific problem, such as the static component, the high-
frequency component, or a frequency-dependent canonical-shaped part.

Functional techniques, like Titchmarsh, Wiener-Hopf, Cauchy, Abel, and RHP
methods, can be employed to achieve the analytical inversion of the static or the high-
frequency part of the integral operator. In contrast, canonical-shaped problems can be

tackled through the separation of variables that delivers the inversion of selected part.
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In certain scenarios, both analytical regularization and the discretization of the IE
are carried out simultaneously, known as analytical preconditioning. By selecting the
eigenfunctions of a suitable singular part of the integral operator as expansion functions
and applying Galerkin projection, a perfect preconditioner is established, rendering the
resulting matrix operator of the Fredholm second kind. In general, the Fredholm theory
can be applied if the discretized operator can be expressed as the sum of an invertible
operator (with a doubly continuous inverse operator) and a completely continuous
operator. When convergence is guaranteed, the precision of computations can be readily
controlled by adjusting the matrix truncation order, theoretically achieving machine
precision. This surpasses the capabilities of commercial software available today [70].

Although the MAR-based algorithms offer guaranteed convergence according to
general theory, practical validation of the results is essential. While validation through
comparison with commercial software is feasible, it is often impractical due to the
superior accuracy of MAR-based codes. Consequently, adequate validation must rely on
results obtained by other equally accurate techniques. Such techniques are limited, and
typically, only two are available:

1) The method of separation of variables, applicable to simple-shaped scatterers like
circular cylinders and spheres, which yields convergent series in terms of explicitly
given special functions.

2) The Nystrom-type discretization, a well-grounded approach to numerically solving
SIE. In this case, convergence is not derived from the Fredholm theory but from the
theorems on the interpolation-type quadrature formulas, which account for both the
IE singularities and the edge behavior of the unknowns.

In this thesis, we reduce the wave-scattering problems to certain dual series
equations (DSE) for the Floquet harmonic (i.e. diffraction order) amplitudes and convert
them to the Fredholm second kind infinite-matrix equations. In the case of graphene-
strip grating, such DSEs are of two different forms.

In one of them appearing in the H-polarization case, after singling out the singular

(divergent) part, the unknown coefficients have a weight in one of two series equations,
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this weight is |n|. In the early 1960s, it was discovered that such a DSE is equivalent to
the RHP, which can be solved analytically. This provides the semi-inversion for the
DSE of the whole full-wave problem. In the other DSE, which appears in the E-
polarization case, the mentioned weight is absent. Then, one can employ analytical
regularization through the IDFT. In the either case, this yields a Fredholm second-kind
matrix equation for the Flogquet harmonic amplitudes.

DSE inversion using the Riemann-Hilbert Problem: Consider the DSE,

i X, |n[e™ = i fe™, O<|pl<x
n;_w = (1.1)
D x.e™ =0, p|<6

where the coefficients f, of the expansion of the right-hand side are known and belong

o0 2 - - -
to the class 1, that is ) |~ |f | <oo. Exact analytical solution of (1.1) is found as

explained in [39,25,44,45] and can be conveniently written as

Xo= > fTn(6), m=0+1+2,.. (1.2)

Ton(0) =22 P, (—U)P, ,(~u)—P, ,(~U)P,(—u) , ms=n, (1.3)
1 Im|

Ton 0 =——414+> t, U P, —u{, m=0 (1.4)
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where u=cosf, t,(-u)=1 t —u =u,t., -u =P, —u +20P_, —u +P_, —U ,

1ts>2

and P, are the Legendre polynomials.
0o 2
Note that (1.2) is a numeric sequence of the class I,, thatis » ~ ~ |x,| <oo.

Details of the analytical derivation of closed forms (1.3) - (1.5) can be found in [39].
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In Chapter 3, we apply the rigorous solution of RHP to invert analytically the static
part of the full-wave scattering problem, associated with the graphene strip grating
located in the free space and illuminated with the H-polarized plane wave. In Chapter 4,
the same is done in the analysis of the eigenvalue problem for the H-polarized natural
modes of the same configuration.

DSE inversion using the Inverse Discrete Fourier Transform: Consider the
following DSE:

s Y e, <
anemqﬁ: n_Z_;O n® o<|g|<x (1.6)

0, g <5

Unlike the previous case, here we multiply both sides by e and integrate from 0
to 27— see [25,44,45]. The result is

Xo=»_ f.Snm & . m=0,+£1+2.. (1.7)
sind m—n B

Smn 6 = M=, Smn 6 =1——. (18)
T m—n T

Note that if f , n=0,%1... is a number sequence of the class |,, then x. belongs

to that class as well.

In Chapter 3, we apply the IDFT to invert analytically the static part of the full-
wave scattering problem, associated with the graphene strip grating located in the free
space and illuminated with the E-polarized plane wave. In Chapter 4, the same is done
in the eigenvalue problem for the E-polarized natural modes of the same configuration.

The main merit of the briefly explained MAR techniques is the guaranteed
convergence of the final code with progressively larger matrix truncation orders. If the
convergence takes place, then it offers precise control over computational errors,

allowing them, in principle, to be minimized to the level of machine precision.
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Computational errors definition. In this work, we will visualize the rate of
convergence computing the relative error, in the |,-norm, of the solution found with

varying truncation order N as compared to certain Nmax >> N, for various grating and

slab parameters,

+N max 2 +N max 2 -1
e(N)= > x,(]N)—xrﬂNmaX)‘ > x,ﬁ“max)‘ , (1.9)
n=—N max n=—N max
N max

where x") and x"™ are the amplitudes of the Floquet harmonics, calculated with a

variable truncation order N and at some large value of this order, N respectively (for

instance, N_. = 400), and the first of these sequences must be supplemented with zeros
to the size of the second.

In the analysis of the wave scattering from gratings, normally the phenomena of
reflection and transmission, in terms of the power, are interested in. Therefore, we

define and compute the far-field error as a function of N,
e, (N) =|oy — 00|/ Tugo; (1.10)

where o s either transmittance or reflectance.
1.4  Quantum Kubo model of graphene conductivity and impedance

The most widely adopted today quantum model of the electron mobility in
graphene monolayer is the Kubo model [16]. Here, the graphene thickness is considered
zero, and its surface conductivity o(w,x,,7,T) depends on the cyclic frequency w,
chemical potential x, electron relaxation time 7 and temperature T. The conductivity

consists of the intraband term,

iqszT H H
= e © +2In{1+exp| ———= | |+, :
Fine nhz(a)+irl){kBT Pl (1.11)
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where g, is the charge of the electron, kg is the Boltzmann constant, and / is the reduced
Planck constant and the interband one, which is expressed as integral of known

functions, however, has a simple approximation valid at g, >>k,T [16],

. ig? n Zuc—(a)+ifl)h
" Axh Zyc+(a)+ir_1)h

(1.12)

Note that at the room temperature, T = 300 K, kT =0.026 eV.

As well known, the fine structure of graphene has hexagonal cells, the size of
which is around 10 nm. Therefore, non-local effects in conductivity can be neglected if
a finite sample of graphene is wider than 100 nm. Besides, anisotropy of conductivity
can be neglected if the cell size is negligible in comparison to the wavelength, i.e. to the
frequencies that are as high as in the X-ray range.

The graphene complex-valued surface impedance, Z, is the inverse of the surface

electron conductivity

Z7=22, =20y +0

intra inter

)" (1.13)

Inspection of (1.11) and (1.12) shows (see [16]) shows that the interband
conductivity, in absolute value, is much smaller than the intraband one, which is also
called the Drude term, in the wide range from the statics to the far infrared light where
the upper frequency bound, f., scales with the chemical potential. For instance, if

r=1ps, T=300K, and x4 =0.25¢eV, then |o,,|<0.1c,,.|at the frequencies up to
40 THz, while if 4 =0.39 eV, then the same is valid at the frequencies up to 60 THz,

Still, at the near infrared and visible light frequencies, the description of the surface
conductivity of graphene should take into account both types of conductivity.
Provided that o;

inter

can be neglected, the normalized surface impedance (or

resistivity) of graphene can be taken as follows:

Z(w)~(Z,0,

intra

) =-i(w+ict)Q™, (1.14)
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Figure 1.1. Real and imaginary parts of the graphene surface impedance Z,Z versus the
chemical potential at several frequencies in the THz range.

where

OeksTZ, | { ( H ﬂ
Q== & +2In| 1+exp| —= ||, (1.15)
x| kT -

and Z, is the free-space impedance.

Here, the quantity Q has dimensionality of the frequency, however, does not
depend on the cyclic frequency.

The variation of the real and imaginary parts of Z with chemical potential, at

several frequencies in the THz range, is demonstrated in Fig. 1.1.

Below, we will use full expression (1.13) in the numerical analysis and simplified
expression (1.16) in the analytical description of the natural-mode frequencies.

Note that if the time dependence is chosen as e and ImZ <0 as is true for

(1.14) that is known as inductive impedance behavior - then infinite sheet of graphene
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can support the propagation of the plasmon wave [16]. However, close inspection of the
Kubo expressions (1.11) and (1.12) shows that the imaginary parts of intraband and
interband conductivities have opposite signs. Therefore, in principle, at extremely high
frequencies where the latter one overweighs the former (see above), the plasmonic

nature of graphene gets spoiled.

1.5 Plasmonic lasers and Lasing Eigenvalue Problem

In this thesis, the author studies the natural modes of the graphene-strip grating
lying on the gain-material substrate, using the lasing eigenvalue problem (LEP).
Therefore, both the topic of plasmonic lasers based on PMs of the arrays of plasmonic
particles and the essentials of the LEP approach are introduced here.

DGs has been used in laser technology since long ago, however, as components,
needed to manipulate the output light beam, e.g. improve its directionality [71].

Today, visible and infrared range lasers are various and since recently a promising
trend in their development is the use, as working modes, the so-called LMs of various
periodic arrays [72]. Such lasers are able to combine low emission thresholds and high
directionality. Here, the most frequently met configuration is a two-periodic array of
noble metal nanoparticles, laying on the flat substrate [73-78]. As a simpler alternative,
one-periodic gratings, i.e. noble metal nanostrip arrays also attract attention [26]. It
should be noted that in some of these works LMs are incorrectly called “lattice plasmon
modes.” In reality, their nature is connected solely to the periodicity — so, no surprise
that all-dielectric laser designs with LMs are also attracting great attention [79].

From the experiments, it is visible that finite gratings are able to demonstrate sharp
resonances at the LM frequencies of infinite gratings, and the larger the gratings, the
sharper the resonances. This observation is in line with theoretical analyses of the
visible light scattering from finite arrays of noble-metal strips and wires [80-82,22]. To
have high Q-factors of LMs on these arrays, the number of periods in finite grating

should be counted in tens or hundreds.
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Examining the publications on LM lasers, one can find the active regions shaped as
either substrates or superstrates, which contain either internal quantum wells or
quantum dot layers or the layers with dye molecules. Experiments show that in the
presence of the pumping, the natural modes of such open cavities can be brought to the
threshold of the lasing. Still, they have rather high thresholds because of the lossy
nature of metals. Hence, keeping in mind that the graphene has lower losses than the
metals, one can suggest a replacement of noble-metal elements with graphene ones.

In fact, the patterned graphene has already become attractive for building the
lasers. One of the first proposals of such type was published in [83]; other potentialities
are found in review [84]. More recently, spherical-particle and circular-wire laser
configurations fully covered with graphene have been considered in [85,86]. Further,
the LEP for a dimer made of two graphene-covered circular quantum wires has been
studied in [87]. These works have demonstrated that such configurations are composite
open resonators, which support natural modes of two families — PM of graphene covers
and dielectric modes of non-graphene elements. The former modes have lower
frequencies that the latter ones, and their thresholds are also lower if the cavity size is
less than a few micrometers.

For a periodic open resonator, PMs co-exist with the LMs, which have escaped a
systematic study so far. Although this gap can be filled using a variety of numerical
techniques, the MAR-based ones occupy special place as they guarantee the
convergence of the final code with progressively larger matrix truncation orders.

As the PMs are absent in the E-polarization case, it is especially interesting to
study the LM frequencies and thresholds in that case and compare the to the H-case.

A usual approach to study the natural modes of the laser cavities has been the
classical complex-frequency eigenvalue problem, where the presence of active regions
is neglected and considered are the modes of passive open resonators. This approach is,
however, not fully adequate because the existence of the threshold gain in the active
region is not characterized.

From the viewpoint of the Maxwell theory of time-harmonic EM waves, the
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lasing can be adequately modeled as the existence of the real-valued eigenfrequency
(natural mode frequency) of an open resonator.

As known, the Complex Poynting Theorem, applied to the modes of arbitrary
passive open resonator, the eigenfrequencies can be only complex [88], with non-zero
imaginary parts — this follows from the radiation condition that entails finite radiation
losses. Therefore, in order to have a real-valued eigenfrequency (no attenuation in time),
an open resonator must contain a region, filled in with the gain material — active region.

The gain materials are “quantum” ones, in the sense that they rely on the quantum
mechanisms to be able to demonstrate the inverse population of electronic levels and the
stimulated emission of light. Various semiconductors, dye-doped polymers, or
crystalline materials doped with ions of erbium or some other rare-earth elements
display this type of behavior, under the pumping. In terms of macroscopic
electromagnetic theory, this behavior can be conveniently expressed as single parameter

- the imaginary part of the dielectric permittivity, Ime, or, equivalently, the refractive

index Ime (for nonmagnetic materials). To correspond to the "negative losses" the
sign of these values must be properly chosen. If the time dependence is €™, then the

gain material has Ime <0 and Imye <0.

Guided by these considerations, we can imagine arbitrary open cavity as shown
in Fig. 1.2 where either the whole cavity or its part is filled in with a gain material and
placed into a lossless outer medium. All such materials are nonmagnetic and therefore
can be safely characterized with not ¢ but a complex refractive index with nonzero
negative imaginary part, v=a —iy, where a is known refractive index and y>0 is
unknown threshold gain index [88]. As already mentioned, arbitrary open cavity
possess a discrete and infinite set of complex-valued natural frequencies
(wavenumbers) k., each associated with certain non-zero field, {E,,H.} (s =12, ...).
These fields are the residues in the poles, which have no-zero negative imaginary parts,

Imk () <0, for the passive cavities with y <0. The gain material in the active region
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enables compensation for the radiation and ohmic losses that yields the real-valued

natural frequencies (k, = Rek; ).

Fig. 1.2. Cross-sectional geometry of arbitrary open resonator containing active region,
V,. Here, Ry is the radius of the open resonator, i.e. the sphere containing all its

components, V,, and V¢ are the passive-dielectric and free-space domains of the
resonator - see [88].

The related threshold gain value y, >0 is mode-specific, i.e. depends on the mode
type. From the mathematical point of view, the pair of ordered numbers k, and y,, and

the associated modal fields solve the source-free eigenvalue problem, which is the same
as the scattering problem but without the incident field. This problem is the LEP. The
modes as solutions to LEP automatically satisfy the classical definition of the lasing
threshold, “total gain = total loss™ [88].

Here, the fact that the LEP is linear problem should not be a surprise because at
the threshold the field amplitude of a real laser as dynamic source is zero.

As mentioned, real value for k, indicates that the natural mode at the lasing

threshold does not experience time decay. What is worth mentioning is that the node

field does not grow at infinity as e "™<"R

<0. Instead, it behaves as a cylindrical wave,
in 2-D, or a spherical wave, in 3-D, and satisfies usual Sommerfeld or Silver-Muller

condition of radiation, respectively.
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Since 2004, the LEP has been applied to the analysis of the threshold conditions
for the modes of various 1-D and 2-D cavities with active regions: Fabry-Perot active
cavity between two Bragg reflectors [89], stand-alone circular ones [90], dimers of them
[91] and cyclic photonic molecules [92], kite-shaped [93], elliptic [94], and other ones.
Important result was the proof that the threshold is inverse proportional to the product
of the Q-factor and the overlap factor between the mode electric field and the active
region [88].

Periodic laser configurations have also been studied: this was an infinite grating
of circular quantum wires [95] and a binary grating of alternating circular quantum
wires and silver wire [96]. In particular, it was found that the LMs can have lower
thresholds than the PMs on the silver wires.

More recently, LEP approach has been applied to the modes of 2-D noble-metal
nanolasers in the shape of silver strip [97] and silver tube [98] inside the circular
“quantum wire.” A graphene nanotube laser and a dimer of such nanotubes, with the
gain-material inner filling, were considered in [88].

For the proper positioning, one can keep in mind that the other LEP-like

approaches exist, see [99-103], where the threshold gain is characterized, instead of 7,
with the aid of Ime <0 or so-called “gain per wavelength,” that is the product, g =ky .

As a final remark, we point out to the fact that the gain actually always depends on

the frequency, with a maximum at a certain central frequency, say, «,, which depends
on the material. To reflect this dependence, one can introduce the gain index into the

LEP as y=jyexp[-C(@” — )] and search for the mode-specific eigenvalue pairs as

(ks 7)
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Conclusions to Chapter 1

In this chapter, we have reviewed briefly the role of diffraction gratings in optics
and microwaves and emphasized their applications in sensors, filters, and antennas.

We have also presented some essentials on the theoretical descriptions of wave
scattering from flat strip gratings, assuming their infinite extent. Being a chapter of the
general theory of DGs, research into the scattering from strip gratings and associated
eigenvalue problems, including two orthogonal polarizations, started from the PEC-strip
DGs. Here, two variations of MAR are pivotal: MAR-RHP and MAR-Galerkin, which
provide mathematically guaranteed convergence and have other merits. Later, the both
were modified to treat the imperfect-strip DGs. We emphasize the LM resonances in
both polarizations, underlining their significance in diverse applications.

Further, we have briefly explained the versions of MAR methods used in the
thesis. Namely, the Riemann-Hilbert Problem and the Inverse Discrete Fourier
Transform applied further in wave scattering from graphene-strip gratings are discussed,
resulting in the Fredholm second-kind matrix equations for the field Floguet harmonics.

In addition, we present a summary on the quantum Kubo formalism, which
provides analytical description of the dependence of graphene’s conductivity on the
frequency, electron relaxation time, and chemical potential.

Finally, the chapter discusses the Lasing Eigenvalue Problem (LEP) for open
resonators equipped with active regions. The LEP relies on the already established
discreteness of the complex frequencies of the open resonator natural modes. However,
noting that the lasing can be understood as a stationary emission, LEP is tailored
specifically to access not only the real-valued frequency but also the value of the gain in
the active region, needed to make the natural frequency real.

Combining LEP with MAR’s benefits, such as guaranteed convergence and precise
error control, the threshold conditions for the modes of graphene-strip grating on the

gain-material substrate can be accurately studied.
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CHAPTER 2
AUXILIARY PROBLEM: SCATTERING OF PLANE WAVES FROM
PERFECTLY ELECTRICALLY CONDUCTING STRIP GRATING ON
DIELECTRIC SUBSTRATE

This chapter discusses the H- and E-polarized plane-wave scattering from an
infinite flat grating of PEC strips, placed on the interface of a dielectric slab. We reduce
each of these problems to a DSE for the complex amplitudes of the Floquet spatial
harmonics. Then we perform analytical regularization of that equation, based on the
inversion of the static part of the problem with the aid of the RHP analytical solution. In
either case this yields a Fredholm second-kind infinite matrix equation, numerical
solution of which has a guaranteed convergence. Numerical results obtained
demonstrate how the rate of convergence depends on the geometrical parameters and
then concentrate on the resonance effects in the reflection and transmission. The results
of chapter 2 were published in [A4, A5, A13-A16].

2.1  Scattering problem formulation

Consider infinite flat grating of PEC strips with zero thickness and width

d, located in the plane y =0 with period p (Fig. 2.1). This plane is the top interface of a

homogeneous dielectric layer (substrate) of the thickness h and relative dielectric

permittivity ¢. The H or E-polarized plane wave is incident at the angle « and depends

on time as e, where @ is the cyclic frequency.

The field components are (E,,E,,0) and (0,0,H,) in the case of the H-
polarization, however, (0,0,E,) and (H,,H,,0) in the case of the E-polarization. It is

convenient to choose H, for the H-polarization and E, for the E-polarization as the
“basic” component; we denote it U (x,y) in both cases.

Thus, thee given incident field is a plane wave,
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Figure 2.1. The cross-sectional geometry of a flat PEC strip grating on top of a
dielectric layer, illuminated by a plane wave.

U in (X, y) — e—ikoysina—ikoxcow’ y > 0’ (21)
12 12
where ky=w/c=w(gu,)  and c=1/(gu,) , k=plA.

Then the total field is a sum, U =U" +U® in the domain #1, and U =U®¥in

the domains ##2,3. Thus, we obtain the following boundary value problem for
Uu=u" j=123:
(I) it must satisfy the 2-D Helmholtz equation everywhere outside the strips and

the slab interfaces,
(V2 +k3eD)UD(F)=0, y=0,y=-h, j=123 (2.2)
where we mean " =¢® =1 ¢? =¢ .
(I) the PEC boundary condition at the strips, i.e. Etg(F):O at
reM:{y=0,|x—npl<d/2,n=0,£1+2,.}, that means E, or

in the case of the H -polarization, E, =0, or
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ouU® foy+oU™/oy=0, aU® [oy=0, (2.3-a)
in the case of the E -polarization, E, =0, or
u®+u"=0, U?=0 (2.3-b)

and at the slots r e S=Re\M of the upper interface,

in the case of the H -polarization, H, and E, are continuous,
U®+um=U®, (aU® +oU™)/oy=e"0U? /oy, (2.4-a)

in the case of the E -polarization, E, and H, are continuous,
U®+um=U®, u® +ou™/ey=0U%? /oy, (2.4-b)

the transmission conditions at the whole lower interface, y = - h, xeRe:{-o0 < x < +ow},
l.e. H, and

in the case of the H-polarization, H, and E, are continuous,
U®=u® ¢lou®@/oy=0U® /oy, (2.5-a)

in the case of the E -polarization, E, and H,_ are continuous,
U®=u® au@/oy=0U® /oy, (2.5-b)

(111) the radiation condition, which means that at y —+« the scattered field must
contain only "outgoing™ waves, and (IV) the condition of local finiteness of power: the
power, stored in any finite space domain D tends to zero if D —0; this condition
determines the edge behavior of the function U: it must tend to zero as a square root of
the distance to the edge.

Additionally, the periodicity of the domain M, together with the shape of (2.1),

entails the quasi-periodicity property,
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U(Xx+ p) =e P> U(x) (2.6)

which enables reducing the analysis to single period of the scatterer.
Conditions (1)—(1V) provide the uniqueness of the solution: if the function U

exists, then it is unique.
2.2 Analytical regularization using the Riemann-Hilbert Problem method

We choose H, for the H-polarization and E, for the E-polarization as the "basic "
component, we denote it as U(X,y) in both cases.

Thanks to the quasi-periodicity, the scattered field in the upper half-space (domain
#1) is sought as a Floquet series. By introducing dimensionless notations,
Gp=27x1p, w=2xylp, O=xdlp, E=2rhlp, x=pla (2.7)
this is

U @ — Z anei(yn‘//+ﬂn¢) ’ W > 0 ) (2.8)

N=—o0

Here, the exponents that depend on the spatial coordinates x and y are called
Floguet harmonics or diffraction orders. The field in the dielectric slab (domain #2) and
the field in the lower half-space (domain #3) can be represented in a similar way,

respectively,

U (2) _ i (bneiﬂfﬁ't// + Cne—i}/ﬁlt// )eiﬁn(ﬁ , 0 > '7” > _5 , (29)

n=—o0

U® = z d e Ay £ (2.10)

N=—o0

The coefficients a,,b,,c, and d, are as yet unknown complex numbers

(amplitudes of Floguet harmonics); other notations are as follows:

o= (2= p2) = (k2= B2) B, =P, (2.11)
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where y,=xsina, f,=xcosa, and the root branch for y, is chosen such that
Rey, >0 or Imy,>0. Then, as it is easy to see, the field U(x,y) satisfies equations

(2.2) and the radiation condition.

The reflectance and transmittance are the power fractions reflected from and
transmitted through the slab with grating. They are expressed via the Floquet harmonic
amplitudes as

Pref :7/0_1 Z 7n|an|2’ Ptr =]/0_l Z Vn |dn|2' (212)

[n—x cos Bl<x [n—xcos Bl<x

Note that the following law of power conservation applies: P + P, =1 (if the

ref

substrate is lossless) or P

ref

+P, +P

abs

=1 ( if it is lossy, with P,  for the power

absorbed by the substrate) — see Fig 2.2.

s| —X\
LBy
s %; ﬂgf k,
\"/ e
{ = 3 «
d P

ﬁ/xféﬂ

Figure — 2.2 Integration contour L in the derivation of the law of power conservation
with the aid of the Complex Poynting Theorem.

To derive the power conservation law, it is necessary to apply the complex
Poynting theorem to the total field function and its complex conjugate in the elementary
period of the grating, bounded by the contour L.

Next, we consider the H and E polarizations separately.
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2.2.1 H-polarization, basic equations

The problem is reduced to finding the amplitudes of the Floguet harmonics, for
which we need to use the boundary conditions (2.3) - (2.5). Substituting (2.8) and (2.9)

into the conditions (2.5a), we obtain

& o sl sl : = H :
Z (bne|7n '3 + Cne|7n g )e'ﬁnqj — Z dne|7n§+|ﬁn¢
N=—o0 N=—00

(2.13)

0

P N iy i sl . . . .
% Z (yr?lbnewné i 7/slcne|7n§)elﬂn¢ — Z _Iyndnel}/ncfﬂﬂnqj
L. N=—©

N=—o0

Since these series coincide on the entire period, we replace them with term-wise

equations for each value of the index n = 0,£1,+2,... and exclude the unknowns b, and

c, , expressing them via d, using the following expressions:

b — %[1_%jei(7ﬁl+yn)é’ c = %(1+7Ls‘|9}ei(7§lyn)§ (2.14)
Vn 2\ 7

According to the PEC conditions (2.3a) on the strips, r € M , we have

—xsinae”™ + Z y.ae’’ =0, (2.15)

N=—o0

0

> (izgb, —ixgc, )’ =0. (2.16)

N=—o0

On the slots, 1 € S, the conditions (2.4a) yield

e + i a e’ = i (b, +c, e (2.17)

N=—o0 N=—c0

—xcsinae”™” + i ay e = 1 i (7§'bn - yﬁ'cn)eiﬂ”¢ (2.18)

N=—o0 N=—o0

Thanks to (2.15) and (2.16), equation (2.18) is satisfied on the entire period.

Therefore, on substituting (2.14) into d, and introducing new coefficients (n = 0,£1,...),
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M, =-0,.ksina +y,a,, (2.19)

where ¢, , is the Kroenecker symbol, we see that

d, =M, ee” iy sin(rI&) + y,eco8(738) | (2.20)
then, introducing, for convenience,

FH — i i (7/? _yng)e”’r?l@t +(7r?| +7n8)_i7§§ ’ (221)

G (7 _7n8)evs'é (7 +7n8)e“73'

Wy

X =M,(TH) +2, x,=M,(TH)", (2.22)

Al =|n[+i@+ &)L (2.23)

the expression (2.17) enables us to derive DSE:

S x,[nfe™ = > x,AMe™ —i(L+g)2rt, o< pl<,
N=—00

N=—o0

- (2.24)
> xe™ =0, |4l<0,

Analysis of behavior of (2.21) if n— o0 shows that the weight function (2.23),
which is under the sum in the right part of DSE (2.24), behaves as

Al =0(xcosar) +O(x*/ | n[) + O(e "™'?) . This means that the left hand part of DSE,

which does not depend on frequency and other parameters, corresponds to the static part
for the problem of the plane wave scattering from a grating in free space.

The left hand part of (2.24) forms the RHP on the unit circle, solution of which is
known and expressed via the Plemelij-Sokhotskii formulas. Details of this procedure
can be found in section 1.3, note that it exploits explicitly the edge condition (IV).

When applied to the full equation (2.24), this yields an infinite matrix equation,

Xo= > Al X, +Br, m=0,+1+2,.. (2.25)
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A=A, Ky e P)T, (), B, =—i(l+£)2I,T,,(6). (2.26)

The functions T (6) are expressed via the Legendre polynomials P, of the
argument u=-—cosé, see equations (1.3)-(1.5) in Chapter 1 and [25,44]. The large-
index asymptotics of the Legendre polynomials allow seeing that the following

inequalities hold true:

const
Tm”(e)g|m|1’2| n[“lm-n+1]|
(2.27)
g ‘/—\mn‘z < 0, J:ZOO ‘Bm i < 00 (228)

Hence, equation (2.25) is a Fredholm second kind matrix equation in the space of

number sequences |, and hence the convergence of its numerical solution for

progressively larger truncation numbers is mathematically guaranteed. Note that
expressions (2.26) are combinations of elementary functions, need no numerical
integrations, and hence can be easily computed with machine precision. This is an
advantage before the other MAR-Galerkin technique, such as [45,47-52].

As mentioned, inspection of (2.23) shows the regularization, i.e. semi-inversion of
DSE, is performed via the analytical inversion of the static part of the scattering
problem, associated with the strip grating on free space (i.e. in the absence of the
substrate). As can be expected, this worsens the convergence rate of the code based on

the solution of (2.25), truncated to finite order N, with respect to the free space case

2.2.2 E-nonsipusauisi, basic equations

In the case the E-polarization the problem is also reduced to finding the amplitudes
of the Floguet harmonics, for which we need to use boundary conditions (2.3) - (2.5).
Substituting series (2.8) and (2.9) in the condition (2.5b), we can find the unknown

amplitudes
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0

3 (bne—iys% N Cneiyﬁ'ff)e—iﬂnaﬁ _ i d g
A A (2.29)

0

Z ( yslbne—iyﬁ'cf _ yj'cneiyﬁ' ) i __ Z y-d giéing

N=—o0

These equations, as in the case of H-polarization, can be replaced with term-wise

equations n =0,£1,£2,... and exclude the unknowns b, and c,, expressing them via d,

bn d (1 7[1} '(7n|+7n)§’ Cn :%(14_ L;Je—i(ysl_}/n)‘: (2.30)
2 7 2 Vn

From the PEC conditions (2.3b) on the strips, it follows that

e+ > ae" =0, (2.31)

N=—00

i (b, +c,)e =0. (2.32)

N=—o0

On the slots, the continuity conditions (2.4b) give us

o b . i ae = i (b, +c,)e (2.33)

N=—c0 N=—o0

—Ksinae™ + i aye= i (7§'bn -y, )e_iﬂ”"j (2.34)

N=—o0 N=—0

As equation (2.34) holds on the entire period, we are allowed to substitute there b,

and c, on d_ from (2.30). Then, after introducing new coefficients (n =0, +1),

X, =0,,+a,, (2.35)

we arrive at the expression allowing to exclude d,,

d, =2x,77e| (13 = 7,)e" + (1 + 7, )e‘wq’r (2.36)

For convenience, we introduce the notations,
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(7 =7 ) = (i 4y )e

=y - — — |, 2.37
T ) (e 30
Ay =|n[+ir;, (2.38)
Then, using (2.36), we arrive at DSE,
i X, |n|e™ = i x Afe™ —2iy,, 0<|p|< 7,
= = (2.39)

> x.e™=0, |pl<0,

It should be noted that in order to derive the second equation of (2.39) we can use
any of the boundary conditions that hold on the strips, i.e. either (2.31) or (2.32). If
n—o, then the weight functions in the right-hand part of (2.39) behaves as
AS =0(xcosa)+O(x” | n[™*) +O(e "™'Py,

The left-hand part of (2.39), which does not depend on the frequency, forms the
RHP on the unit circle in complex plane. The analytical solution of this RHP can be
found using the Plemelij-Sokhotskii formulas [36,37,59]; see also [51]. This yields an

infinite matrix equation,

Xo= D> AL X, +Br, m=0,+1+2,... (2.40)
Ann =4, (k8,01 P)T,,(0), By ==i2y,T,0(0). (2.41)

where functions T,,, are the combinations of the Legendre polynomials, see (1.3) - (1.5).
Similar to the case of the H-polarization, the estimations) of these polynomials for
large indices allows us to establish the estimations (2.27), which, in turn, prove that the

following inequalities hold:

+00 2

pX

m,N=—o0

A

mn

< o0, m?_ow‘er < (242)
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This means that (2.40) is a Fredholm second kind matrix equation in the space of

sequences |,. Then the Fredholm theorems guarantee the convergence of the numerical

solution if one takes the matrix truncation number N larger. Basically, this fact is well
known since [59]. Still, the rate of convergence has apparently not been studied in
detail.

2.3 Validation and results of numerical study of wave scattering

In this section, we present numerical results of studying the scattering of the H and
E-polarized plane waves from an infinite flat grating of PEC strips located on the
surface of a dielectric substrate, as shown in Fig. 2.1. As explained in sub-section 2.2,
those problems are reduced to infinite matrix Fredholm equations of the second kind.
Earlier works of this kind can be found in [36-38], and the grating on a dielectric
substrate was considered only in [46], but the equations given therein are too
complicated and there are no numerical results.

It should be added that the MAR-Galerkin technique has also been used to study
wave scattering from such gratings - see [47-51]. Therefore, their results can be used as
a reference. In these works, one can notice extremely sharp resonances, which,
unfortunately, have not been studied. Note that we are able to obtain reliable numerical

results that retain their controlled accuracy even in the sharpest resonances.

2.3.1 H-polarization: resonances on substrate and lattice modes

First of all, we need to make sure that the solution to the problem converges. To

visualize the rate of convergence, we consider normal and inclined incidence,
a =90°and 45° and select two values of the normalized frequency x=p/ A, namely

14.1 and 100.1. We compute the relative error, using the formula (1.9) from section 1.3.

Typical results of such computations are shown in Fig. 2.3.
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Figure. 2.3. The error, in the I,-norm, in the computation of unknown coefficients versus
the matrix truncation order for the grating with a = 90° and 45°, d/ p=0.5, and

different parameters ¢ and h/p, as indicated in the inset. The normalized frequency is
x=14.1 for (a) and (c), and x =100.1 for (b) and (d).

As can be seen, the computational error does indeed begin to decrease as the order
N becomes larger than the normalized frequency, by an amount that slightly depends on
h/A ande¢. It should be noted that since the reflectance of the grating and the
transmittance through it have the form of finite sums (2.10), the error in their
computation is not worse than the error in solution of the matrix equation.

We define and compute the far-field error as a function of N using the formula
(1.10) from chapter 1. The results of computations are shown in Fig. 2.4. With an
increase in the truncation order N over x, marked by red arrows, the error decreases,

I.e. the accuracy of the calculation increases.



64

, h/p=1 dip=1/2 k=100.1 | ‘ hip=1 dfpfﬂz k=141

0.1

0,014 2,

&=1; a=90°
- = g=1; a=45°

£=2.25; a=90° 0.001 4
— — £=2.25;0.=45°

1E-4 4 .
1E=5 3 '

1E-6

0.01

0.001

error

error

&=1;0=090°
— — g=1,0=45°
—=2.25; «=90°
— — g=2.25; u=45° ([

1E4 4

1E-54

T T T T T T
0 50 100 150 200 a 50 100 150 200

Truncation number, N Truncation number, N
e e hip=1/7 dip=1/2 x=100.1
014 —=2,25,a=90% | 0.1 4 —e=2,25,a=90%}
£=5,=90°; £=5,0=90%
£=12,0=90%; £=12,0=90°;
= = £=2,25,a=45°; 0.01 = = £=2,25,a=45°%]
0.014 — — &=5,a=45%

error
error

0.001 4

0.001 4
1E-4

1E-4 - : : 1E-55 - T F
0 50 100 150 200 0 50 100 150 200

Truncation number, N Truncation number, N

(©) (d)

Figure 2.4. The far-field error versus the order of truncation for the grating with d/p =
0.5, angle of incidence « = 90° and 45° and h/p and ¢ as indicated. x =14.1 (a), (c)
and x=100.1 (b), (d).

As visible, the rate of convergence is the highest in the case of absence of
dielectric layer, while thicker and optically denser slabs entail larger values of N to

achieve the same accuracy. In contrast, the fill factor, d / p, and the incidence angle,

« , do not change the rate of convergence.

Further, as a proof of validation, we present, in Fig. 2.5, a comparison of our
results with those of [51], computed by a different accurate technique, MAR-Galerkin
with Chebyshev’s polynomials. Here, we show the absolute value of the H-polarization
reflection coefficient (amplitude of the 0-th Floguest harmonic) of PEC strip grating on

top of dielectric substrate versus the frequency in the range x <1, where only the 0-th
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Floguet harmonic of the scattered field is radiating. The data for freestanding strip array
and for unloaded dielectric slab are also shown.

The corresponding curves visually overlap that is understandable because both
methods are convergent and the orders of discretization provide 4-5 correct digits. A
striking feature of the plot for the narrow-strip (d = 0.2p) grating on the thin (h = 0.2p)
dielectric slab is a sharp total-reflectance peak at 57 GHz. This is a resonance on the

LM, discussed below. Off resonance, the reflection is almost the same as for a bare slab.

10 L 1 " 1 L 1 2 | " 1
slab with grating
0.8 unloaded slab (without grating) -
grating without slab
- results of [45]
0.6 L
=
L
0.4 E
0.2 - L.
0.0 ¥ T ¥ T ¥ T ' T 4 T ¥

0 10 20 30 40 50 60
Frequency (GHz)

Figure 2.5. Comparison of the results of [51] and MAR-RHP using (2.47), forp=5

mm, d=1 mm, h=1 mm, £¢=2.2 (i.e. d/p = h/p = 0.2). Absolute value of the
amplitude reflection coefficient of strip grating on top of dielectric substrate versus the
frequency in the single-mode range, 0 < x <1, H-polarization. The plots for freestanding
strip array and for bare dielectric slab are also shown.

After the verification of our code, we present, in Fig.2.6 (a), the plots of the
reflectance (2.12) as a function of the normalized frequency, for three values of the strip

width-to-period ratio, d / p=0.9,0.5and 0.1, for the normal incidence. Note the sharp

bends of all curves exactly at x =1,2,3 due to the RA of the £n-th index, which are the
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roots of equations y, =0, n=11,42,.. at cosa =0. At lower frequency values, one

can see the Fano-shape double extrema due to the resonances on the LM of the 1-st and
higher orders, respectively.

Fig. 2.6 (b) is a zoom of the vicinity of the 1-st RA. As visible, if the PEC strips
are narrow (d/p << 1), then the reflectance is low, however, in the resonance on the LM
it becomes total, in a narrow range. Still, for half-period and wider strips (d/p > 0.5), the
reflection is high everywhere except of the vicinity of the LM resonance, where it drops
to a low value. Thus, a PEC-strip grating on a thin dielectric substrate is able to
demonstrate both extraordinary full-reflection and extraordinary full-transmission

effects, in the LM resonances.
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Figure 2.6. The reflectance of the on-substrate grating versus the normalized frequency
for h/ p=1/7, £=2.25 (Teflon, Polyethylene), and 3 values of the filling factor, i.e.

the strip-to-period ratio (a), and the zoom of (a) in the marked interval near k=1 (b).

These and other results presented below have been computed with truncation
number N = 50 that provides 8 or more correct digits in the reflectance at all studied

frequencies.
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To investigate the resonances on the LM, we plot, in Fig. 2.7, the curves of the
reflectance (2.12) as a function of the normalized frequency «;, for the H-polarized plane
wave, normally incident on a grating with equal strips and slots and two values of
relative dielectric permittivity, 2.2 (Teflon, Polyethylene) and 3.8 (fused quartz). The

plot of the same quantity for a grating without substrate (¢=1) is also shown for

comparison.
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Figure 2.7. The same as in Fig. 2.5 however for d/ p=0.5, h/ p=1/7, and three
values of the permittivity, £ =1, 2.25,and 3.8 (fused quartz) (a), and the zooms of (a)
in the marked intervals near x =1 (b), and x=2 (c).
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Sharp resonances slightly below the RA wavelengths, at the normal incidence, are
well visible. However, they are absent if the dielectric slab is absent, i.e. PEC strip
grating is suspended in the free space. On panels (b) and (c), we show the zooms of the
vicinities of the 1-st and the 2-nd RA, respectively.

At the frequencies, corresponding to the lattice resonances, we visualize the near
field patterns — see Figs. 2.8 and 2.9. Here, as the resonances have Fano shapes, each
pair of patterns corresponds to the frequencies of the maximum (a) and the minimum
(b) reflectance. Therefore, on panels (a) one can see the standing wave created by the
interference of the incident plane wave and the strongly reflected wave (i.e. the 0-th
Floquet harmonic) in the upper half-space and deep shadow in the lower half-space. The

slab is depicted using white dashes.

h/p=1/7 d/p=1/2 k=0.929 £=2.25 a=90" h/p=1/7 d/p=1/2 x=0.966 £=2.25 a=90"

20 -15 -10 -05 00 05 10 15 20

x/p

(a)

Figure 2.8. Near magnetic field patterns on three periods of the PEC strip grating on
top of dielectric slab with £=2.25, in the maximum & =0.929 (a) and in the minimum
x=0.966 (b) of reflectance, corresponding to the Fano-shape resonance on the L;
mode, see Fig.2.7 (b).

In the domain of slab, the LM contribution clearly dominates on both panels. In
Fig. 2.8, there are two bright spots of the field on a period, while in Fig. 2.9 there are six

spots. This indicates that the resonating modes are Lo and Lsg, respectively.
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The standing-wave pattern, characteristic for the LM, is created by the equal-
amplitude +1-st and -1-st Floguet harmonics, and +3-rd and -3-rd, respectively. This

happens because the mentioned harmonics dominate over all others, in the resonances.
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Figure 2.9. The same as Fig. 2.8 however for & =3.8 and the resonance on the L; mode
in the maximum x=1.886 (a) and in the minimum x=1.902 (b) of the reflectance, see
Fig.2.7 (c).

It should be emphasized that the lattice or grating modes are attracting great
attention today. This is because they are responsible for a number of amazing and
sometimes counter-intuitive phenomena, such as “anomalous” transmission and,
reciprocally, reflection, and enhanced absorption in the case of lossy gratings, plus giant
Kerr, Kerker, and Faradey effects [65-68]. The existence of the LMs is caused by the
periodicity. Their optical properties, for the strip and wire gratings in the visible-light
wavelength range were recently reviewed in [62]; another review, with emphasis on
experimental measurements, can be found in [63].

As already mentioned, the LMs, i.e. the poles of the field U as a function of the
normalized frequency, «, and associated with them resonances are absent in the case of
zero-thickness PEC-strip grating in the free space, i.e. without finite-thickness dielectric
substrate [34]. This is apparently the reason that the corresponding effects are

sometimes called “guided-mode resonances.” Still, as soon as the strips are assumed not
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PEC, the resonances on the LMs emerge near to the RA as the dominant features in the
scattering and absorption [24,58-60]. The same happens if the strips have however
small but finite thickness.

Here, the existence of the natural guided waves of the dielectric substrate or non-
PEC plane plays the role of mediator. They shift the LM poles further to the red from
the RA values according to the wavelength of the natural wave, which is always shorter
than the free-space wavelength.

Finally, we present the results related to the inclined incidence of the plane H-
polarized wave on the PEC strip grating on top of a dielectric substrate layer, see Fig.

2.10.
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Figure 2.10. The reflectance of the on-substrate grating versus the normalized frequency
for h/ p=1/7 and &£=2.25 in the case of the normal and inclined incidence, the values

of the incidence angle « and the filling factor d/p are indicated in the insets.

In this case, each RA splits to two anomalies, +m-th and —m-th, according to two
separate roots of equations y, =0, n=1142.. at cosa #0. One of the RA, for
positive n, obtains higher, in frequency, value, than at the normal incidence, and the
other RA, for negative n, obtains lower value. Each of the split RA is accompanied with

its own “satellite” in the form of the LMs resonance of the same index. They have
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opposite symmetry with respect to the center of the strip and therefore only one of them,
on the symmetric mode, is present at the normal incidence, while the other one, on the
anti-symmetric sister mode, is absent. Field portraits of such modes can be seen in
Chapter 4. In the other words, the anti-symmetric LM remains “dark” at the normal
incidence, while symmetric one is “bright.” At inclined incidence, both LM are bright.
These effects are especially well observable if the strip width-to-period ratio is
close to 1 (see panel (a)) or to zero (see panel (b)). The resonances reveal themselves as
sharp and deep drops in reflection and even sharper peaks of reflection, respectively.
This corresponds to what is frequently called anomalous transmission” and “anomalous

reflection” phenomena, respectively.
2.3.2 E-polarization: resonances on substrate and lattice modes

First, just like in the case of H-polarization, we need to make sure that the solution
to the problem converges. To analyze the rate of convergence of the code based on
(2.40), we make some numerical experiments. Namely, we select two values of the
normalized frequency x=p/A, 14.1 and 100.1, take both normal and inclined
incidence, a = 90° and 45°, and assume that the strips and slots are equal in size.

As usual, the relative error is computed in the sense of I,-norm, as the difference

between two solutions found with a given truncation order N and with some large N,

As the transmittance and reflectance are expressed via finite sums (2.10) and
(2.13), the error in their computation is of the same order as (1.9). The results of
computations are shown in Fig. 2.10 for N . =400 and several values of the substrate
thickness and dielectric constant. As visible, with an increase in the truncation order N
the error at first oscillates, and then after some threshold value larger than x, the error
starts decreasing, i.e. the accuracy of the calculation increases. As one can see from Fig.
2.11, the exponential decay starts as soon as N becomes larger than x/c + M , xe M

where M depends on the substrate thickness and optical contrast.
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As visible, the rate of convergence is similar both in the case of absence of
dielectric layer and at its presence. Still, thicker and optically denser substrates entail

larger values of N to achieve the same accuracy. In contrast, the fill factor, d / p, and

the angle of incidence, « , have no effect on the rate of convergence.
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Figure 2.11. The error versus the order of truncation for the grating with strips d/p = 0.5,
angles of incidence o = 90° and 45°, and h/p and ¢ as indicated in the inset, x= 14.1
(@), (c) and x=100.1 (b), (d).

As for the power conservation law, we have found that it is satisfied with machine
precision.
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Further, for the validation of our code we present, in Fig. 2.12, a comparison of our
results with those of [51], computed by another full-wave convergent technique, MAR-
Galerkin with the Chebyshev first-kind polynomials as basis functions.

The plots correspond to the absolute value of the transmission coefficient as a
function of the frequency for three cases: on-substrate strip grating, freestanding strip
grating, and unloaded dielectric slab. Visual overlap of the curves is exactly what is
expected if both methods are full-wave, convergent, and the orders of discretization are
high enough. As the results of [51] were validated by the agreement with commercial

software, this agreement holds for our results as well.
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Figure 2.12. Comparison of the results of [51] and MAR-RHP using (2.42), forp=5

mm, d=4 mm, h=15 mm, ¢=2.2. Absolute value of the amplitude transmission
coefficient of strip grating on top of dielectric substrate versus the frequency in the
single-harmonic range, 0 <x <1. The plots for freestanding strip array and for bare
dielectric slab are also shown.

Note a sharp total-transmission peak at 57 GHz for the wide-strip (d = 0.8p)
grating on the thin (h = 0.3p) dielectric slab. This is the lattice-mode LM;; resonance,
which has actually a Fano shape of double extremum. Off this resonance, the

transmission is small and almost the same as for a PEC-strip grating without substrate.
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Thus, the LM resonance can completely ruin the famous “Hertz effect” of strong
reflection of the E-polarized plane wave from a PEC strip grating.

In Fig. 2.13 (a) presented are the plots of the reflectance (2.12) versus the
normalized frequency x for the normal incidence of the E-polarized plane wave on a
grating with narrow strips, in the free space and on a thin substrate with the relative
permittivity values 2.8 and 3.8.

At x=1,2,3, all the curves make sharp bends: these points are the RA, where
p=A4,21,31; they are the branch points of the scattered field U (X, y,«) as a function of

the frequency. Besides, one can see double (Fano-shape) extrema: these are the
resonances on the LM™, of the orders m = 1,2,3. Panels (b) and (c) show zooms of the
spectra in the vicinities of RA. They demonstrate that, if the optical contrast or
thickness of substrate gets smaller, then the LM peaks of total reflection move closer to
the RA frequencies and their Q-factors get larger. The shift, to the red side, from the RA
Is mediated by the guided wave of the dielectric slab. At the normal incidence, where a
phase shift between the adjacent periods is absent, the resonance frequencies are found
to be [61],

Ko K (g,f,lﬁ )_1/2 , (2.43)

mM m

where x*=m and l<eg <& is the “effective dielectric permittivity” of the slab,
defined as square of the normalized by k, propagation constant of the M-th guided wave
of the slab, TEy. This value is a function of the frequency and slab’s parameters, h and
& Therefore, if the substrate parameters are as in Fig. 2.13, the resonance on the LMy,
mode takes place below RA;, however, there are two Fano-shape resonances, on LMy,
and LMs,, between RA; and RA..

Here, it should be reminded that the principal wave TE, has no cutoff frequency,
and higher-order waves TEy start propagating at the frequencies, satisfying the

condition, k,h(¢—1)"> =Mz [104]. Note that for all guided waves including the
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principal wave, & =1+(&-1)0(k,h)? if kh —>Mz(e—1)"*+0. Therefore, if either
& —1 or h—0, then all the complex poles of U(x,y,x), which correspond to LMs,

tend to the RA values, which are the branching points, and then migrate to the bottom

(non-physical) sheet of the square-root Riemann surface. Such singularities do not show

up as peaks or drops, in the spectral dependences.
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Figure 2.13. The reflectance of the free-standing and on-substrate gratings with
h/p=1/7, d/p=0.2 versus the normalized frequency for three values of the

permittivity £ =1, £=2.8 and 3.8 (a), zooms near RAs,x =1 (b) and x =2 (c).
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In Fig. 2.14 to 2.16, we present the portraits of the near electric field, |E,|, in three

resonances LM, (n = 1,2,3) marked in Fig. 2.13 (b), (c) by arrows. Inside the substrate,
one can see the LM signatures: bright hot spots, the number of which, on period,

corresponds to the first lattice-mode index [62].

140 hip=1/7 dip=4/5 x=0.469 £=3.8 a=90° . hip=1/7 dip=4/5 «=0.947 £=3.8 6=90"

l 3,000
100 4 2,625 100
t 2,250

50 50
~ 1,875

[ -
2625
2,250

1,875

- 1,500

y/p
o

= = = — N IR 5 ¢

1,125
-50 -50

-1.125

- 0,7500

I 0,7500

- I
140 y ' ' . . e -140

140 -100 50 Q 50 100 140 -140  -100 -50 0 50 100 140
x/p x/p

(a) (b)

0,3750 -100 0,3750

0,000

Figure 2.14. The electric field patterns on four periods in the reflectance minimum,
x=0.469(a) and maximum, x=0.947 (b) of the LMy, resonance at the normal
incidence on the same grating as in Fig. 2.13.

The lattice (a.k.a. grating) modes and associated resonance effects are currently
under intensive investigation. This is explained by the observation that they are found
behind a number of remarkable and to some extent counter-intuitive phenomena, for
instance, “anomalously” high transmission through and, reciprocally, high reflection
from the arrays of extremely narrow holes and small particles, respectively. This relates
also to the resonances in absorption in lossy gratings, and to “giant” Kerr, Kerker, and
Faraday effects [65-68].

The LMs are natural modes of every grating as a periodic open resonator.
Pioneering research where such resonances were discovered theoretically in the
scattering from a periodically modulated impedance plane, was published in 1965 [31].

However, these authors failed to recognize that the resonances were caused by the
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presence of certain eigenmodes as solutions to the source-free equations, neither they

studied the scattering from the other gratings, gradually, this discovery was forgotten.
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Figure 2.15. The electric field patterns on four periods in the reflectance minimum,
x=1.37(a) and maximum, x=1.447 (b) of the LM",;, resonance at the normal
incidence on the same grating as in Fig. 2.13.
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Figure 2.16 The electric field patterns on four periods in the reflectance minimum,
x=1.864(a) and maximum, x=1.885 (b) of the LM";; resonance at the normal
incidence on the same grating as in Fig. 2.13.

In 1986, K. Carron and his co-workers published a study into the scattering of light
by large two-periodic arrays of silver nanoparticles on a substrate, combining theory

and measurements and showing narrow resonances near the RA wavelengths [105].
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However, then this effect did not attract any reasonable attention of research
community. Ten years later, extremely high-Q complex poles near to the RAs were
computed in the analysis of the 2-periodic gratings made of 3-D diclectric “bricks”
[106]. Nevertheless, these findings had not been properly understood and explained.

As explained in review [62], this situation started changing in the early 2000s.
Today, there is a well-established understanding that the lattice (a.k.a. grating) modes
are specific eigenmodes of nearly all types of gratings as periodic open resonators. For
the gratings of material strips and wires in the visible-light range of wavelengths, their
properties were summarized in [62]; fine measurements of the characteristics of these
resonances in the visible-light range were published in [63].

In view of recent findings and better understanding of the nature of LMs, it
becomes clear that they are directly responsible for the famous “large phased-array
blindness effect” discovered experimentally over 50 years ago [107,108] and still
puzzling the antenna engineers [109]; sometimes this effect hides behind “anomalously
high” Q-factors of antenna arrays [110].

Traditionally, this phenomenon is explained via empiric considerations of the
“synchronism” between the substrate guided mode and a Floquet harmonic of the
scattered field. As one can see, this is formally expressed as equation (2.43). New
knowledge allows to see that the true reason of “blindness” is that the frequency, during
the scan, hits a tremendously high-Q natural mode of the array that, indeed, lays near to
the point of that “synchronism”.

Worth noting is that LMs and associated with them resonances do not exist on a
zero-thickness PEC-strip grating, suspended in the free space (see Fig. 2.13). In [50,51],
this is explained by the absence of capacitance (inductance) in the equivalent circuit in
the case of the E (H) polarization. From the full-wave viewpoint the same can be
attributed to the fact that the LM pole is located on the bottom sheet of the associated
two-sheet Riemann surface that has the branching point at RA. The need of substrate to
shift that pole to the top sheet (see Chapter 3) is a reason to justify the fact that the

resonances on LMs are also called “guided-mode resonances” [111].
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As already mentioned, if the substrate thickness or its contrast with environment
tends to zero, then the LM poles tend to the corresponding RA frequencies [62]. As the
latter if purely real-valued, the LM Q-factors grow up indefinitely. On finite periodic
arrays, these Q-factors reach finite high vales, defined by the number of elements. This
makes such resonances dangerous and unwanted phenomena in phased array antennas
however very attractive in the design of optical biological and chemical sensors.

To make our study more complete, we present in Fig. 2.17 the spectra of the
reflectance of on-substrate PEC-strip gratings with three different filling factors, d/p,

under the normal incidence.
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Figure 2.17. The reflectance of the on-substrate grating versus the normalized frequency
for h/ p=0.2, £¢=2.8 (Teflon, Polyethylene), and three values of the filling factor,

i.e. the strip-to-period ratio (a), and the zoom in the marked interval near k=1 (b).

As expected, a grating of wide PEC strips shows almost total reflectance at all
wavelengths exceeding the grating period, except a narrow drop very close to the first
RA. This is the resonance on the first-order LM. A zoom of spectra in the vicinity of the
first RA, shown on panel (b), helps seeing this effect of “anomalous transmission” in
detail. The opposite case of a grating of narrow PEC strips shows good reflection only
for the waves, much longer than the grating period. Even if the wave is twice longer

than the period, reflectance drops to 0.1 and less. However, near the first RA frequency,
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the reflectance shows a resonance spike of almost total reflection again, now due to the

first-order LM resonance. This is sometimes called ‘“anomalous reflection”
phenomenon.

Finally, the plots in Fig. 2.18 correspond to the inclined incidence of the E-
polarized plane wave on the on-substrate gratings with three different values of the
filling factor, d/p = 0.1, 0.5 and 0.9. The incidence angle values, 85° and 89°, are near to

the normal-incidence value of o =90°.
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Figure 2.18. The reflectance of the on-substrate grating with wide strips (a), (b) and
narrow strips (c), (d) versus the normalized frequency for h/ p=0.2 and £=2.8 in the

case of the normal and inclined incidence, the values of the incidence angle « and the
filling factor d/p are indicated in the insets. Note that panels (b) and (d) are zooms of the
parts of (a) and (c), respectively.
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These plots demonstrate that, at the inclined incidence, the resonances on LMs
split into pairs together with RAs. As known, one of RAs shifts to the “blue” and the
other — to the “red.” Each LM",,, resonance accompanies the corresponding RA of the

+m-th order from the red side of the spectrum.

Conclusions to Chapter 2

We have implemented a numerical algorithm for solving the problem of the
scattering a plane H and E-polarized electromagnetic waves from an infinite grating of
PEC strips on the surface of a dielectric substrate. This algorithm is meshless and based
on full-wave formulation of the corresponding boundary value problem. It exploits the
analytical inversion of the static part of the problem associated with the grating in free
space by means of the well-known RHP solution and the derivation of the Fredholm
matrix equation of the second kind. Note that we have presented the final matrix
equations in the form, most convenient for programing and computations.

The behavior of the computation at error versus the order of truncation of this
matrix equation confirms the convergence of the algorithm and its high efficiency.

Computations of the frequency dependences of the reflectance of the grating on the
substrate confirmed the existence of high Q resonances on the LMs, which do not exist
on the grating of PEC strips in free space. These results help explain the effect of
"phased array blindness"”, which was discovered more than 50 years ago, and the
phenomenon of "abnormally high Q" matrix, which has been recently reported. The
importance of LM resonances for applications is twofold. First, this effect may be
undesirable due to the deterioration of electromagnetic systems based on arrays of
identical elements, such as large phased array antennas. In this case, our analysis helps
avoid such deterioration. However, second, the behavior of the scattering resonances on

ultra-high Q LMs suggests that they can be useful as a physical basis in various sensing
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applications; for example, they can be used to design sensors of refractive index
changes in the substrate.

The portraits of the resonance near fields clearly show the standing waves of high
amplitudes which are characteristic of LMs, previously found for other infinite and
finite gratings.

The results related to Chapter 2 were published as journal papers [A4, A5] and
conference papers [A13 - A16].
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CHAPTER 3
SCATTERING AND ABSORPTION OF PLANE WAVES BY GRAPHENE
STRIP GRATING ON DIELECTRIC SUBSTRATE

This chapter presents the analysis of the scattering and absorption of the H and E-
polarized plane waves by infinite grating of flat graphene strips on the surface of a
dielectric substrate. The difference from the PEC-strip grating of Chapter 2 is in the
imperfect conductivity of strips, characterized with the aid of the complex-valued
surface impedance (or resistivity), Z. Fortunately, this surface impedance has analytical
description, given by the Kubo formalism — see Chapter 1. Then, the one-side PEC
boundary conditions on the strips change to the two-side resistive boundary conditions.
Still, the role played by the impedance is different in the H- and E-polarization cases.

In the H-case, finite impedance is non-singular perturbation to the PEC condition.
In contrast, it is a singular perturbation in the E-case. Moreover, in the E-case non-zero
Impedance plays the role of regularizing parameter. As a consequence, our full-wave
meshless codes are now very different. For the H-polarization, the code is still based on
the analytical semi-inversion using the RHP solution and allows Z = 0. For the E
polarization, it is based on the use of Inverse Discrete Fourier Transform, and Z =0 .

In either case, we reduce the scattering problem to a Fredholm second-kind matrix
equation for the Floguet harmonic amplitudes that guarantees the code convergence.
The convergence provides easy control of computational error, which can be reduced to
machine precision. The matrix elements are combinations of elementary functions and
therefore each code is not only accurate but very economic. This enables us computing
the reflectance, transmittance and absorbance as a function of the frequency, in the wide
band from static case to dozens of THz. Numerical results show that such a metasurface
with micrometer-sized strips is a composite periodic open resonator. It is highly
frequency-selective, thanks to the interplay of three types of natural modes: low-Q slab
modes, moderate-Q plasmon strip modes, and ultrahigh-Q lattice modes, which do not

exist in the absence of the substrate. Varying the chemical potential of graphene, one
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can manipulate the electromagnetic characteristics of metasurface at a fixed frequency
from almost total transmission to almost total reflection.
The results of Chapter 3 were published in [A1-A3, A8-All].

3.1  Scattering problem formulation
The scattering configuration is shown in Fig. 3.1. The scattering problem statement is

the same as for a PEC-strip grating on substrate, considered in Chapter 2, the only

difference is in different boundary conditions at the zero-thickness strips.

(a) (b)

Figure 3.1 Infinite flat graphene strip grating laying on a dielectric substrate and
illuminated by a plane H or E-polarized wave (a) and cross-sectional geometry and
notations used (b).

As in the previous section, in the case of the H -polarization the field components

- in the case of the E-

YRl

are (E,.E,,0) and (0,0,H,) and the “basic” component is H
polarization, the field components are (H,,H, ,0)and (0,0,E,), and the “basic” one is

E, ; in either case, the basic component is denoted as U (x,y). The incident plane wave is

(2.1) and the total field is as in section 2.1. Then, for the unknown scattered field

U(x,y), the following boundary-value problem is formulated: it must satisfy
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(I) the 2-D Helmholtz equation everywhere outside the strips and the slab interfaces
(2.2), with wavenumber k in domains 1,3 and ke in domain 3;.

(1) resistive boundary conditions at the graphene strips lying on the upper interface, i.e.
atreM :{y=0;|x+np|<d/2;n=0,£1,42,...}, namely,

- in the case of the H -polarization

ig[iu @(x,y)+U"(x,y) +UP(x, Y)}

_ (2) _ 1 Gin) _11@
W oyl 2 =2Z[U®(x,0)-U ™ (x,0) ~U ¥ (x,0) |

y=0

(3.1-a)
Q{EU(Z)(X, y)+U " (X, y) +U D (x, y)} =0, (3.1-b)

8y & y=0

- in the case of the E -polarization,
U®(x,0)+U"(x,0)=U(x,0) (3.2-a)
[UP(x,0)+U™(x,0)+U " (x,0) | =—2Z %%[U D y)-U"xy)-UPxy) | (3.2-b)
0 y=0

transparent boundary conditions at the slots between the strips, i.e. at

resS: {y =0;—0< X< +oo} \'M for the either polarization, and similar conditions at the

whole lower interface, y = - h, —00<X<+00, (2.5a) and (2.5b);

(111) the radiation condition: the scattered field in domains 1,3 must contain only the

outgoing and decaying waves; (V) the condition of local finiteness of power.
Conditions (1)—-(1V) provide the solution uniqueness: if the function U exists, then it

Is unique. Note that if Z = 0, then (3.1) turn into the PEC conditions however (3.2) - not.

3.2.  H-case: regularization by the Riemann-Hilbert problem method

The property of quasi-periodicity as in case PCE strips (2.3) allows expanding the
unknown field in terms of the Floquet series in each of domains #1 in the upper half-
space (2.8), #2 in the dielectric substrate (2.9), and #3 in the lower half-space (2.10).
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The reflectance and transmittance are the power fractions taken from the slab with
grating to the upper and lower half-space, respectively. They are expressed via the
Floguet harmonic amplitudes as (2.12).

Substituting (2.8)-(2.9) into the conditions (2.5-a), we obtain

00

sl sl H i . .
Z (bne7|7né +Cne|7n§)e|ﬂn¢ — Z dne|7n§e|ﬁn¢

”l:_ww " . (3.3)
. _insl . sl . R . .
- Z (l;/j'bne sl _I},slcnelyncf)elﬂm _ Z —iy d e"el
N=—ow n=—o0

Since these series coincide on the entire period, we replace them with term-wise

equations and exclude the unknowns b and ¢, , expressing them via d_,
b, =1d e"* (1—%%}”3'5, c, =1d.e"* [1+ %y&ewg (3.4)
According to the graphene conditions (3.1-a) and (3.1-b) on the strips, for |¢|< &,

lﬁ_m” @€+ ay,e+ 1Y (1, - 7§'cn)eiﬁ"¢j i
K

N=—00 N=—o0

; ; , (3.5)

27 ( D (b, +c,)e’ - - > ane“’“¢j
—xsinae™ + Y a y,e = 1 Y (7, -, )e (3.6)

N=—00 & N=-00
On the slots, ¥ €S, the conditions (2.4a) yield, for 6<|¢|<7,
eiﬂ0¢ + Z aneiﬁn¢ — Z (bn + Cn )e'ﬂn¢ (37)
—Kksinae™ + i ay.e’ = 1 i (;/rf'bn - }/,f'cn)eiﬁ"¢ (3.8)
&

N=—0 N=—00

Thanks to (2.4-a) and (3.1-b), equation (3.6) is satisfied on the entire period.
Therefore, on substituting b, and ¢, from (3.4) and introducing new coefficients (n =

0,£1,...),
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X, = (=8, oksina + 7,8, )(T,) " +26,,, (3.9)
o 1 s sttt ] »

" o () () 4 re) | |

we arrive at the expression allowing to exclude d_,
d, =(X, —26,0)T,ce"* | iyysin(y; &) + y,£c08(y; 5)] (3.11)
Note that, if | n|— oo, then the weight function in (3.10) behaves as
M- ||n|[1 O[KCOS&j+O(’(_§j+O(e|n|2nh/p)} (3.12)
1+¢ [n| n
To make analytical regularization, we introduce the function

Al (x,e,h 1 p,a,2) =|n| +ill+ &) +il+&)xZ (3.13)

and, using the expressions (3.5)-(3.10), the following DSE for the unknown

coefficients, X, :

> x, |nje™ = anA“ e —i(l+e)2l,, O<¢l<r, (3.14)

N=—o0

Y %" =0, |gke

It can be verified that if all A, =0, then (3.14) forms the RHP on an arc of the unit
circle in the complex plane. This problem has analytical solution expressed via the
Plemelij-Sokhotskii formulas, as explained, for instance, in [25,45]; note that when
building this solution, the edge condition (1V) is used explicitly. If this procedure is

applied to the full DSE (3.14), it yields an infinite matrix equation,

Xo= D AnX, +Bn, m=0,%1+2,.. (3.15)

At =A"T (), B =-i(l+&)2l,T ,(6), (3.16)

n -mn
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where all notations are the same as for the PEC-strip grating case, see section 2.2. Note
that if Z = 0, then matrix equation (3.15) turns to the PEC equation (2.25).
As in the PEC-strip case, the large-index asymptotics of the Legendre polynomials

enable one to see that the following infinite sums are bounded:

+00
> |a,

‘2
m,N=—o0

< oo, J:ZO)O ‘Bm‘2<oo, (3.17)
This is exactly what is needed to state that equation (3.15) is a Fredholm second

kind matrix equation in the space of number sequences |,. Hence, the convergence of its

numerical solution for progressively larger truncation numbers N is mathematically
guaranteed.

It should be noted that in [39] the inverted part of DSE was slightly different:
namely, it involved the weight |n|+const instead of |n| in (3.14). This led to slightly
faster convergence however led to appearance of the Legendre functions of complex-
valued frequency-dependent index. Computation of these special functios is not a trivial
task. In contrast, expressions (3.16) are combinations of elementary functions. Besides,
they need no numerical integrations and hence can be easily computed with machine
precision. This is an important advantage before the other MAR-like techniques, such as

MAR-Galerkin in the spatial or Fourier-transform domains [38,47-52].
Inspection of (3.12), (3.13) and (3.16) shows that both A, and A . contain the

terms proportional to the normalized frequency, k= p/ A, and the terms, proportional

to e ™" This means that the regularization, i.e. semi-inversion of DSE, is performed
via the analytical inversion of the static limit of the part, corresponding to the strip
grating on the interface between two media, air and dielectric. As a result, both the
existence of the finite thickness of substrate and the finite conductivity of strips must
shift the “threshold” value of the matrix truncation number, after which the error starts

descending, to the larger values than in the case of suspended PEC strips:

Ny ~x[1+he’? [ p+(L+e)| Z]].
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3.3 E-polarization: regularization using the inverse Fourier transform

Note that the Floquet series (2.8) - (2.10) already satisfy the boundary problem
conditions (1) and (I11). The boundary conditions, valid on the whole upper and lower
interfaces, allow excluding a part of unknown coefficients. Then, the dual conditions
(3.2-a) and (3.2-b) generate a DSE, with the domains of validity M and S. On

introducing new unknowns, A, =4,,(1—2«sina /T',)+a,, and denoting

(7 =7 )e" = () + 7 )e

L=t =7 (e () (3.18)
we follow [20] and cast the DSE to the following form:
) 0, O<|gl<x
> AT - —%Z: N ZKZZi’i‘:aeiﬂo¢’ <0 (3.19)

Note that this DSE is drastically different from the PEC-strip case of (2.39).
therefore, the RHP-based regularization is not applicable here. However, as shown in
Section 1.3, the left hand part of (3.19) can be inverted analytically using the IDFT, thus

yielding a matrix equation for the unknowns A . Still, the rate of decay of the obtained
by IDFT matrix elements with larger |[m| and |n| is different, namely O(m™) and
O(In[™). To balance it, we follow [20] and introduce new variables as

X, =AW, w,=.n+1, (3.20)

and finally arrive at the infinite matrix equation as follows:

X+ i A x =BF, m=0,+1+2,... (3.21)
A, =xw, S, (Zw,I; )_l, By, =—sina2x’w,S,(Z 5T, )_l, (3.22)

where
__Sin=m)f g _ 0 n=0+142,.. (3.23)

z(n—m) 7
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AsT§ zi|n[[1+0(e™"?) +O(x*/|n|) | if n>>1 inspection of the large-index
behavior of the matrix elements enables us to state that equation (3.21) is a Fredholm
second kind matrix equation in the space of number sequences I,. Hence, the

convergence of its numerical solution to the exact solution with larger truncation
numbers N is mathematically guaranteed by the Fredholm theorems. Then, the accuracy

Is easily controlled with the aid of the matrix truncation order.

3.4  Analytical study of the Rayleigh Anomalies and natural modes

Rayleigh Anomalies. RA are associated with the branch points of the field U as
a function of the frequency and correspond to y, 2[1(2 —(J_rm—zccosw)Z]l/2 =0 (m=

1,2,...); existence of these branch points is the consequence of our assumption that the
grating is infinite and use of the Floquet series (3.13) and (3.14). Note that the

frequencies, at which % =0, are not the branch points. Thus, RA frequencies do not

depend on the fine structure of the grating period and are given by the following

equations (f =w/ 27 ):

-1
fra_ S0 10 3.23
M 1Fcosa ( )

If the all periods are in the same phase, as at the normal incidence, the £m-th RA

frequencies coalesc and correspond to period divisible by the free-space wavelength,
f*=cm/p, m=12,.. (3.24)

Substrate modes. In the absence of strips, the dielectric-slab substrate is a
simplest 1-D open resonator, sometimes called “Fabry-Perot etalon.” Its natural modes
S, have complex-valued frequencies, which are asymptotically given by the

expressions, found, for instance, in [89],

\/E-I-l} 1 mZO,l,... (325)

tS~cm+1)/2he, QS ~x(m+1)|In
(m+1) Qu = 7( )[ o1
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The Q-factors of the slab modes are low, Q; #10. If the substrate is equipped with

strips, the slab mode frequencies shift in the complex plane, however, they do not
disappear.

Plasmon modes of the strip. As mentioned in Section 3.2, in the H-polarisation
regime the grating of graphene strips demonstrate the resonances associated with the
plasmon modes of each strip, P,,, m=1,2, ...

Plasmon natural modes of a graphene strip can be conveniently viewed as the
modes of the surface-wave Fabry-Perot resonator. Then the characteristic equation for

such modes is
SiN( g yed +¥)~0, (3.26)
where g, is the wavenumber (propagation constant) of the plasmon guided wave of

infinite sheet of graphene located on the interface between dielectric and air and y is
the phase of the reflection coefficient of that wave from the strip edge (here, we assume

that the absolute value of the reflection coefficient equals 1). According to [112], if

|Z* [>>1, then the wavenumber of the plasmon guided wave is
Qo ~ KU+ 2)|[ 1= Z*(A+2) [+O(Z[?), (3.27)

and the best fit with the first-order plasmon mode is obtained if w =7z/4.

Suppose that graphene’s impedance can be approximated with Drude term, (1.14)
with (1.15) for Q. Using this and (3.27) in (3.26) and neglecting the terms other than
the leading one, we conclude that the natural frequencies of the plasmon modes P,, of

graphene strip are given by

1/2
fro L CQUM=Y) o (3.28)
27| d@d+e)

As visible from (3.28), these frequencies are inverse proportional to the square root
of the strip width, d, and proportional to the square root of the mode index, m. They also
scale as square root of the graphene chemical potential. Therefore, one can manipulate
them by changing the DC bias. The Q-factors of the plasmon modes are between 10 and
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100 and depend mainly on the relaxation time, 7. Neglecting the radiation losses and
assuming that the frequency and chemical potential allow Drude approximation for the

surface impedance (1.14), we derive

o[ Gmope " 3.29
QF [ T } , m=12,..., (3.29)

Lattice modes of periodic open resonators. Besides of the dielectric-slab modes
and graphene-strip modes, our metasurface possesses specific “collective” modes,
which appear due to periodicity: these are the LM (also called “grating modes” [62,63]),
L. Here, index m correspond to the “parent” RA (3.30) because their complex
frequencies tend to the latter if the slab thickness shrinks to zero. Still, at any finite

thickness they are shifted, in the main term, by the frequency-dependent factor

g 1k, >1,

H -1
fichm(ng/ko) ’ m:1’2’

.. M=012,.. 3.29
mM 1T cosa (3.29)

Here, g,\H,I is the wavenumber of the n-th guided wave TM,, of the bare dielectric
slab [63]. Note that, as the RA frequencies are purely real-valued, the LM Q-factors are
controlled by the slab thickness mainly, so that if the slab vanishes, all Q% tend to

infinity. However, it is known that the Poynting Theorem prohibits purely real-valued
frequencies of natural modes of open resonators [88]. Indeed, in the limit, the complex
poles of LMs fall into the RA branch points and further migrate to the bottom sheet of
the correspoding Riemann surface.

Today, the LM resonances are found responsible for many remarkable phenomena,
explained earlier by different mechaisms. Among them, besides of those mentioned in
Chapter 2, there are “large phased-array scan blindness effect” [107-109], “anomalous
antenna Q-factors” [110] and “guided-mode resonance” [111].

The casting of the E-case full-wave scattering problem to the Fredholm second-
kind matrix equation (3.21) enables us to perform analytical study of LMs and



93

associated to them resonances in mathematically grounded manner, i.e. without
resorting to the empiric quasi-static and circuit-theory considerations. This follows from
the Gershgorin theorem of the matrix algebra [113], which states that the characteristic
numbers of such a matrix equation are contained inside finite-radius circles on the
complex plane, with their centers at the zeros of the diagonal elements. Here, it is
necessary to introduce the coefficients x* =x_ +x_. and split the matrix of (3.21) into
two independent matrices, for the x-even and x-odd electric fields, that leads to

replacement of S . with the coefficients S; =S  +S_ ., respectively. Then,

assuming that o =90° and considering, for definiteness, the x-even natural modes, the

approximate characteristic equations are

KS5 2 e [THw] st,st,

E—toy e " 40@Z?)=0, m=12,.. (3-30)
2T 2T St xz ([ TE )| S5,

AS (k) =1+

At first, consider the case of the graphene strip grating suspended in the free
space, £=1. Then, as follows from (3.18), 't =2y_ :2(K2—m2)ﬂ2, so that (3.30)

reduces to

kS L
7/m(1<)+ZZ(K)+O(Z )=0, m=12,.., (3.31)

where S’ (s)=s+sin(2zms)/2zm and S__(s)=0(s’). This is transcendental

equation for the frequency x=p/A=2xf/c. If we assume, for simplicity, that

graphene is lossless, 1/ = =0, and that the intraband conductivity dominates over the
interband one, then we can use (1.16) for graphene’s impedance. Selecting the sign “+”

before the square root, i.e. at the top sheet of y,.(x), we obtain equation

ivm? — k2 +if—Qs;m(s)+o(z—2):o, m=12,.., (3.32)
7C

This equation has no roots with Rex <m, although such a root is present on the

bottom sheet, where the sign “—” is selected; it does not show up in the reflectance.
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Returning to the graphene strip grating located on the surface of dielectric

substrate, one has to use full expression (3.18) for T', so that

I (K)HM( L_1p )+o(zz)=o, m=12,.. (3.33)

7C 27Ct
The expression for T'C(x) is quite complicated, however, it can be simplified

under the assumption that the substrate is electrically thin, i.e. h/1—0, namely,
I =2y —if(e-1x° +0(&%) (3.34)

Then, the following approximate characteristic equation appears instead of (3.31):

j/m(/c)—ié‘(g—l)/c2+ipQS;m(S)(1+ Ip J+o(52,z-2):o, m=12,..., (3.35)
2 27C

27Cr

This equation can be treated analytically in the same way as (3.31). The result is

27C 27TMCT

n';g:m_il:ng(g_l)_ pQS,ﬁm(S)(l_ ip ):| +O(§2,Z_2)=O, (3.36)
8m

Therefore, unlike the case of suspended grating, if the parameters of the dielectric
substrate, ¢ and h, are fixed, however the strips are vanishing, s— 0, then the LM
complex natural frequencies tend to the real numbers, which are redshifted from the RA

frequencies,
Kho —>m—im’(e—1)°&? (3.37)

As one can verify, equation (3.37) corresponds to the condition that the grating
period equals to m wavelengths of the principal guided wave of the dielectric slab TE,,

which has no cutoff frequency. Indeed, this wave propagation constant, g.,, satisfies

the transcendental equation, tan (%w/kzg - gTZEOh) = \/gTZEO —k? /\/kzg — g%, [90]. This

equation can be solved analytically if we assume that h—0 and keep the leading term,

yielding A, :/1[ 1k’h*(e-1)° }+O( 3h3) that is in full agreement with (3.37).
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For completeness, it should be noted that if the frequency or the substrate contrast
or its thickness gets larger, then, besides the principal wave TE,, the substrate starts
guiding similar waves of the higher orders, TEy, M > 0. Therefore, new LM resonances
can be expected, mediated by these higher guided waves as well. This guess is indeed

supported by computations (see Section 3.5). Thus, LMs should be classified using not

one but two indices, Lniw,, where m = 1,2, ... and M =0,1,2, ... while + corresponds to
the parity in x.

The obtained above expressions show that the LM frequencies of the on-substrate
graphene strip grating are always close to the RA frequencies, being red-shifted from
them by the values mediated by the guided waves of the substrate. However, because of
the presence of the quantity Q in (3.36), the LM resonances are still tunable, although
in much narrower band than the frequencies of the PM resonances, which exist only in
the case of the H-polarized wave scattering.

The Q-factors of LMs can be also expressed from (3.36). Provided that the mode is
on the top sheet of the corresponding RA, they are

2,32
Qi =i {1 g | M-

mm

(3.38)

pszsn:m<s)} {ng(g_l)_ POS,,1 (5)
2nc 27c

Note that the quantity in the last brackets can turn zero — this happens when the
mode pole coalesces with the RA branching point. Formally, the Q-factor here turns

infinite.

3.5 Results of numerical study of wave scattering and absorption

3.5.1 H-case: resonances on substrate, plasmon and lattice modes

Convergence and validaton. To visualize the rate of convergence of the
numerical solution, we compute the relative error in the |,-norm, of the solution found

with varying truncation order N as compared to N = 400, and defined as (1.9).
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The results in Fig. 2a correspond to the normal and inclined incidence, & =90°and 45°,

on the grating with p=70 zm, d =14 xm, h=10 xm placed on the substrate with
relative dielectric permittivity, £=2.25; 5; 12; the frequency is 5 THz that means
x=1.16. The graphene parameters are T =300K, x4 =039¢eV and =1 ps that results
in the relative surface impedance Z =0.06 —i1.81.

p=70um h/p=1/7 d/p=1/5 f=5 THz p=70um h/p=1/7 d/p=1/5 =5 THz
1 1 1 1 L 1 1 1 1

£=2.25; a=90°
- — —£=2.25; q=45°
£=5; 0=90°

£=2.25; «=90°
- - —£=2.25; a=45°
£=5; a=90°

0,14

: - - - g=5; 0=45° - - - &=5; 0=45°
- . - ]
\ £=12; u=90 0,001 £=12; a=90° |F
T - - —g=12; q=45°
0,01 4 By

- - —£=12; a=45°

error
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T T T T T
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Truncation number, N
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@ )

Figure 3.3. (a) The error in the computation of the Floguet harmonic amplitudes using
(1.2)-(1.5) versus the matrix truncation order for the grating with parameters indicated
in the inset. (b) The error in the computation of the reflectance. The frequency is
f =5 THz and the graphene impedance is Z =0.06 —i1.81.

This value can be considered as the near-field error. As one can see from Fig. 3.3a,

it starts nearly exponential decay as soon as N becomes larger than certain N, . In the

analysis of the plane-wave scattering from gratings, normally the phenomena of
reflection, transmission and absorption, in terms of the power fractions, are of the
primary interest. Therefore, we define and compute the far-field error as a function of N

(1.10). As seen in Fig. 3.3-b, with an increase in N over N, , the error (1.10) starts

decreasing similarly to near-field error, however, the value of that error is 1-2 orders

smaller than for (1.9). As visible, the rate of convergence is the highest in the case of
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absence of dielectric layer and normal incidence, while thinner and optically denser
slabs entail larger values of N to achieve the same accuracy. In contrast, the filling
factor, d / p, does not change N, or the rate of convergence.

Finally, as a proof of validation, we present in Fig. 3.4 a comparison of our results
with those in Fig. 3-a of [42], computed by a conventional MoM code and a MAR-

Galerkin with one weighted Chebyshev polynomial approximating the strip current.

1.0 5 -g=1,7=0 Q

........ g=l.R=D0 e=2.7=0 O

== g=2 Rel0 £=2,7=100 O SV LE
081 . camann | —s=42z=1000)7 S

---= gud, Rel000 o, S
0.6 4 Momen| Medind 1

Reflectance

0.4+

Figure 3.4. Comparison of the results of Fig. 3-a of [42] and MAR-RHP using (1.2)-
(1.5). Reflectance of resistive-strip grating with Z =100 Ohm on dielectric substrate

versus the ratio d/p at x=0.5, «=60°, h/ p=0.2, and ¢ = 2 and 4. The plots for PEC
strip array in the free space and on the same substrate are also shown.

Here, the absolute value of the zeroth-order Floquet harmonic is shown versus the
filling factor, d/p, at the normalized frequency x=0.5 for resistive-strip grating with
Z =100 Ohm on dielectric substrate with e=2and 4 and h= p/5, illuminated by the
H-polarized plane wave incident at « =60°. The PEC-strip case (Z = 0) is also shown,
for comparison. The corresponding curves visually overlap; small discrepancy from
MAR-Galerkin is explained by too low order of the latter and vanishes if d / p <0.3.

Numerical results: interplay of resonances. In Fig. 3.5-a, presented are the plots

of the reflectance (2.12) versus the frequency in the range from zero to 10 THz at the
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normal incidence of the H-polarized plane wave on a grating of graphene strips with

rather small filling factor, d / p=0.2, in the free space and on a rather thin substrate

with h/ p=1/7 and £=2.25 and 4.2.
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Figure 3.5. The reflectance (a), (c), (d) and absorbance (b), (e), (f) of the free-standing
and on-substrate gratings with period p=70 um, d/ p=0.2 and h/ p=1/7 versus

the frequency for three values of the permittivity, £ =1, 2.25, 4.2 (a), and zooms of (a)
and (b) near the Ly (), (€) and the Ly, (d), (f) mode resonances.
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In computations, we follow [20,24,60] and take the following graphene

parameters: temperature T =300K, chemical potential 4, =039eV and -electron
relaxation z=1ps. The latter value is somewhat over-optimistic as the best CVD-

graphene samples available today have twice smaller value of the relaxation time; we

have selected it to emphasize the plasmon resonances. In the end of this Section, we
address the tunability of these resonances with the aid of the potential £, .
The plots in Fig. 3.5-b show similar dependences of the absorbance, for the same

parameters. We do not show the plots for the transmittance because B, =1-P, -P,,.

Note that the RA frequencies, which correspond to x=1 and 2, are found to be 4.286
THz and 8.571 THz, respectively. Besides, one can see several peaks and Fano-shape
double extremums of the reflectance and absorbance. They correspond to the natural
modes of our metasurface. Zoomed-in spectra on panels (b) and (c) show with better
resolution narrow ranges containing sharp peaks on the high-Q LMs Ly and L.
Besides of them, the spectra in Fig. 3.5-a,b reveal medium-Q resonances on the
PMs P, P3, Ps. At the normal incidence, the OMs with even indices remain “dark
modes:” they are not excited because their eigenfields are orthogonal, in symmetry, to
the plane wave. Note that if ¢ =4.2 the LM Ly, hybridises with the PM P;around 4.03
THz.The resonance on the principal PM P, dominates at the frequencies, lower than the
first RA. Its presence, in fact, ruins the so-called Hertz effect of the good transparency,
in the H-polarisation regime, of the gratings made of well-conducting wires or strips
placed with period, smaller than the wavelength; note that the same takes place for the
noble-metal gratings in the visible range [45]. However, enhanced reflection is

accompanied with sizeable absorption.
Below 0.5 THz (this value depends on ¢ and 4 ), on-substrate graphene-strip

grating displays rather good polarization discrimination in Hertz sense. Exact position
of the principal plasmon resonance P, depends on the strip width in accordance with

(3.28) that opens opportunities to design tunable sub-THz polarizers.
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Panels (b) and (c) demonstrate that, if the optical contrast of the substrate and the

host medium gets smaller (the same happens if the substrate gets thinner), then the LM

peaks of high reflection and absorption move closer to the RA frequencies and their Q-

factors get larger. The distance from RA is mediated by the principal guided wave TMq

of the dielectric slab in accordance with (3.29).

Finally, we attract attention to the wide bell-like resonances in Fig. 3.5-a that are
absent in Fig. 3.5-b, at 4.1 THz for £ =4.2 and 5.0 THz for £ =2.25. These are the SM

resonances. They do not show up in the absorbance because here the slab is assumed

lossless. The presented above identification of the natural modes, which are responsible

for the resonances in the THz wave scattering and absorption by the considered

metasurface is supported by the near-field portraits, presented in Figs. 3.6 to 3.8.
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Figure 3.6. The magnetic field patterns on four periods in the resonances on the LMs L,
and Ly at the normal incidence for the same grating as in Fig. 3.5 with £=2.25: (a)
f =4.165 THz (¢) f =7.746THz and with ¢=42: (b) f =4.036 THz and (d)

f =6.739THz.
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hoe=1/7 dip=1/5 1-2.3TIlz £=2.25 u=90° hip=1/7 dip=1/5 f=4.92THz £=2.25 u=90°

(b)

Figure 3.7. The magnetic field patterns on one period in the resonances on the PMs P,
and P; for the same grating as in Fig. 3.5 with £=2.25: (a) f =2.5THz and (b)
f =4.92 THz.
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Figure 3.8. The magnetic field patterns on four periods in the resonances on the SM of
substrate, S, for the same grating as in Fig. 3.5 with (a) £=2.25 at f =5.34 THz and

(b) e=4.2 at f =3.87 THz.

The next results demonstrate what happens to the spectra of reflectance and
absorbance if the angle of the plane-wave incidence starts deviating from the normal.
Plots in Fig. 3.9 correspond to the grating with period p=70 #um made of narrow
graphene strips with d =7 g#m and those in Fig. 3.10 — to the grating of the same period

made of wide strips with d =63 xm. Other parameters are the same as in Fig. 3.5.
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Figure 3.9. Inclined incidence on the on-substrate grating with narrow strips. The
reflectance (a), (c), (d) and absorbance (b), (e), (f) for p=70um,h/ p=1/7,
£=2.25,and d/ p=0.1 versus the frequency at three values of the angle of incidence,
o =907, 89° and 85°. Zooms near LM resonances L™, (b) and L™, (c), are also shown.

If the strips are narrow (Fig. 3.9), then for this combination of parameters at the

normal incidence there is a broad SM resonance S; at around 5 THz,
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Figure 3.10. Inclined incidence on the on-substrate grating with narrow slots. The
reflectance (a), (c), (d) and absorbance (b), (), (f) versus the frequency at three angles
of incidence for the same slab and grating parameters as in Fig. 3.9 except for
d/ p=0.9. Zooms near the LM resonances L., (C), (¢) and L., (d), (), are also shown.

On the red slope of this peak there is a principal PM resonance P; at 3.855 THz

and on the blue slope — the next P; mode resonance, which is much weaker.
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Double RA of the orders £1 is at 4. 286 THz. Slightly red-shifted from this RA is
the sharp LM resonance L;q and its higher-order sister Ly is seen at 7.746 THz. As soon
as the angle of incidence departs from the normal, double RA splits to two separate ones
for the -1-st and +1-st Floquet harmonics.

Each of them is accompanied with the corresponding LM resonance, on the red
side. Note that the negative-index RA is accompanied with resonances on the L.y,
modes, which remained “dark™ at the normal incidence because their field symmetry
was orthogonal to the plane wave. Note that both PM and SM resonances remain intact,
so that off the LM frequencies all curves overlap.

If the strips are wide (the grating is a sheet of graphene with narrow slots) as in
Fig. 3.10, then at the normal incidence the slab-mode resonance is blue-shifted to 6 THz
while the principal plasmon P is red-shifted to 1 THz.

In this case, a departure of the angle of incidence from the normal entails the
appearance of split resonances on the LM L., and L., less intensive than on the
narrow-strip grating. Besides, even-index PM, P,, P4, etc. become visible, at least on the
plots of absorbance.

As the DC tuneability of conductivity is graphene’s most important for

applications feature, we have computed the THz spectra of the reflectance,
transmittance andabsorbance for various values of the chemical potential, 4 . These

dependences are show in Fig. 3.11-a,b,c.As one can see, larger chemical potentials shift

the plasmon-mode resonances to the blue and their peak values get somewhat smaller.
This shift eventually yields, at x =15€eV, the situation where the real values of the

complex natural frequencies of the medium-Q mode P; and the high-Q mode L™y
coincide. In ths situation, the broad peak of high (75%) reflection because of the PM
becomes cut through by a narrower band of low (12%) reflection. In this band, the
absorbance also drops to 0.1%, so that the transmittnce exceeds 87%. Such an effect is
called electromagnetically induced transparency. Due to this effect, by varying the

graphee chemical potential, one can change the transmittance/reflectance ratio of the H-
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polarised terahertz plane wave, i.e. the transparency of the metasurface, in large

dynamical range.
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Figure 3.11. (a)-(c) Reflectance, transmittance and absorbance versus the frequency of
the H-polarized plane wave, normally incident of the on-substrate narrow-strip grating
with p=70 um, h/ p=1/7, d/ p=0.2 and £=2.25 for four values p, =0.25eV,

0.39 eV, 0.5 eV and 1 eV. (d) Zoom of the narrow band around P, L;; and RA;
frequencies at y, =1.5eV.

3.5.2 E-case: resonances on substrate and lattice modes

For numerical experiments, we choose the graphene parameters as follows:

4. =0.39 eV, T=300K, and electron relaxation time 7 =1 ps. The latter value is rather

optimistic, however, it helps to emphasize the LM resonances. Note that today the
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largest values of graphene’s chemical potential, achieved with the best available

samples, are around 1 eV.

In Fig. 3.12, we show the frequency dependences of the reflectance (a) and
absorbance (b) of the studied metasurface in the range from zero to 10 THz, in the case
of the normal incidence.

p=70 um h=10 um d=14 um p=0.39eV u=90° p=70 um h=10 um d=14 um p=0.39eV a=90°
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Figure 3.12. The reflectance (a) and absorbance (b) of the suspended and on-substrate
gratings with period p=70 um,filling factor d/p=0.2,and relative substrate

thickness h/ p=1/7,versus the frequency for three values of substrate permittivity,
e=12.25and 4.2.

In computations, we use the matrix equation (3.21) truncated to N = 50. The
transmittance can be found from the power conservation law, T=1-R-A, and is not
shown. Here, the grating has period of p = 70 um, the strip width is d = 14 um, and the
substrate thickness is h = 10 um. Thus, both the filling factor of the grating and the
relative thickness of the substrate are rather small, d/ p=0.2 andh/ p=0.143,
respectively. The substrate relative dielectric permittivity is 1 (i.e. the grating is
suspended in free space), 2.25 and 4.2. On the plots, one can see several sharp Fano-

shape double-extremum peaks, overlapping with a sinus-like background. These are the
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ultrahigh-Q LM Ly," and Ly" resonances on the background of low-Q SM resonances
So, S1, and S,. The positions of the LM peaks are defined by the period and mediated by
the wavelength of the principal guided wave TE, of the dielectric-slab substrate - see
[24,60]. They are always shifted to the red side of the RAs, the first two pairs of which
(for the normal incidence, +1-st and +2-nd) correspond to x=1and 2 and lie at 4.286
THz and 8.572 THz, respectively. The shift from RA gets larger for larger optical
contrast and thickness of the substrate and larger mode index, m, which corresponds to
the RA index. Note that, for the graphene strip grating suspended in the free space, no
resonance peaks of reflectance are observed, however, there are sharp drops of both
transmittance and absorbance at the RA frequencies.

Wide bell-like peaks of reflectance in Fig. 3.12a are located at 3.84 THz for
£=4.2 and at 5.29 THz for £=2.25. As mentioned, they correspond to the lowest y-
odd mode, S;, of the slab as a Fabry-Perot resonator, slightly perturbed by the presence
of strips. They are absent on the plots of absorbance in Fig. 3.12b as the slab is assumed
lossless. The broad minima of reflectance are also associated with the SM, however,
those which have the y-even E-fields when the strips are absent. The lowest of them is
So, which has zero frequency in the absence of strips; the appearance of strips makes its
frequency finite.

In Fig. 3.13, we show in-resonance total electric field portraits computed at the
frequencies of the absorbance peaks corresponding to the x-even LMs L™ and Ly
Here, the graphene strips are marked as white straight lines and the dielectric-air
boundaries are shown as white dotted lines.

The panels (a) and (b) are for the substrate with permittivity 2.25 and the panels (c)
and (d) — with permittivity 4.2. They demonstrate the standing-wave patterns both
above the grating and in the normal direction. In the +y direction, the standing wave
appears due to strong reflection of the incident plane wave. The standing wave along the
grating is the signature of the corresponding natural LM: two (for L") and four (for

L") bright spots on the period.
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Figure 3.13. The electric field patterns on four periods in the resonances on the LMs
L™ ((2) and (c)) and Ly," ((b) and (d)) at the normal incidence for the same grating as in
Fig. 3.12. The metasurface parameters are indicated at the top of each panel.

This is because in the LM resonances, at the normal incidence, the near field is
heavily dominated by the contribution of two Floquet harmonics, namely, +1-st and £2-
nd, respectively, see eg. (4) in [50]. Note that these harmonics remain non-propagating
away from the grating, and their in-resonance amplitudes scale with LM Q-factors. This
means that they can be arbitrarily large if the periodicity vanishes because then the
frequencies tend to purely real RA values.

For completeness, in Fig. 3.14 we show the near electric field patterns at the
resonance frequencies, corresponding to the SM, S;. They demonstrate the standing
wave patterns in the normal direction only, slightly perturbed by the presence of strips.

This is as expected as the bare SMs are essentially the modes of 1-D Fabry-Perot etalon.
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Figure 3.14. The electric field patterns on four periods in the resonances on the SM of
substrate, S;, perturbed by the strips, at the normal incidence on the same grating as in
Fig. 3.12 with (a) £ =2.25 at f =5.29 THz and (b) ¢ =4.2 at f =3.84 THz.

The most famous and attractive for application feature of graphene is the tunability
of its electron conductivity and hence its impedance, with the aid of DC bias, which
controls the chemical potential — see (1.13). Therefore, it is interesting and important to
study how the variation of the chemical potential translates to the change of the
reflectance, transmittance and absorbance of the patterned graphene configuration. As
known, in the case of the H-polarization (magnetic field parallel to the strip edges) the
grating of graphene strips possesses the strip PMs [20,24,52,58-60]. PM frequencies
strongly depend on the chemical potential because these modes are the natural modes of
the Fabry-Perot resonator, where graphene surface wave bounces between the strip
edges — see (3.28). The propagation constant of the graphene plasmon wave is
determined by graphene’s impedance, hence, it scales as the square root of the chemical
potential. Thanks to this effect, on-substrate graphene strip gratings are in the core of
the design of tunable bio and chemo-sensors [3,8] based on the measurement of the PM
resonance peak frequency. The other H-polarization modes of such a grating, SMs and
LMs, are much less sensitive to the chemical potential variation.

However, in the E-polarization regime, there is no plasmon natural wave on a sheet

of graphene and, therefore, no PMs on the strips. This leaves only the SMs and LMs as
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possible candidates for the sensor applications. In Fig. 3.15, we present the spectra of R

and A at 4 values of the chemical potential between 0.25 eV and 1 eV.
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Figure 3.15. Reflectance (a) and absorbance (b) versus the frequency at the normal
incidence on the same grating as in Figs. 3.12 at four values of chemical
potential, 1z, =0.25 eV, 0.39 eV, 0.5eV and 1 eV.

These plots show that the variation of the chemical potential still has certain effect
on the LM resonances. In Fig. 3.16, we present the color maps of the reflectance and

absorbance as functions of two parameters, frequency and chemical potential.
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Figure 3.16. Color maps of reflectance (a) and absorbance (b) versus the frequency and
the chemical potential at the normal incidence at the same grating as in Figs. 2-5.



111

On these maps, the LM resonances show up as bright narrow “ridges” of high
reflection located on the red side from the RA frequencies (marked with arrows) and
approaching these frequencies as the chemical potential grows up. Note that this is in
contrast to the enhanced transmission in the LM resonances that is found in the E-
polarization scattering from imperfect-metal strip gratings on dielectric substrate [114].
The difference appears due to good transparency of graphene in the THz range in
contrast to nearly impenetrable behavior of thin metal film used in [114] in the sub-THz
range. As explained in Section 3.4, the LM frequencies and Q-factors can be studied
analytically thanks to the regularized nature of equation (3.21).

In Fig. 3.17, we present zooms of the color maps of the reflectance from Fig. 3.16-
a near the LM resonances L*;o and L™ 5.

Here, we have added, by white dashed lines, the solutions of approximate
equations (3.33), where it is assumed that 1/ 7 =0, truncated to N = 50. One can see
very close agreement between the peak values of R and the real parts of the

corresponding LM frequencies.
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Figure 3.17. Zooms of color map of reflectance from Fig. 3.16a near the LM resonances
Lio" and L,". Dashed white lines show the frequencies found from approximate
equation (3.33).

The tunability of the considered LMs is visible well on the maps in Fig. 3.17 where

the largest potential is taken as 2 eV.
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Another interesting question is the dependence of the LM resonances of the filling
ratio, s = d/p. Color maps in Fig. 3.18 show the reflectance and absorbance as functions
of the frequency and s, computed by the full-wave equation (3.27) truncated to N = 50.
As visible, the LM resonances remain red-shifted from the RA frequencies for all s,

however, this shift gets smaller if s—1, i.e. if the slots between strips are vanishing.
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Figure 3.18. Color maps of reflectance (a) and absorbance (b) versus the frequency and
the grating filling factor at the normal incidence at the same grating as in Figs. 3.12-17.

The limiting value of the resonance frequency at s = 1 corresponds to the condition
that the grating period equals m lengths of the natural wave, guided by the substrate
with the upper surface covered with graphene.

In Fig. 3.19, we present the zooms of the color map of the reflectance from Fig.
3.18a in the vicinities of three LM resonances, L"1o, L"5 and L"3, computed from the
full-wave equation (3.21) truncated to N = 50. For comparison, dashed white lines show
the resonance frequencies found from approximate equation (3.33), where it is assumed
that 1/7=0.

One can see very good agreement between these approximations and the peak

frequency of R. Note that the number of the peak broadenings corresponds to the mode
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index. These broadenings are caused by the drops in the mode Q-factors, which
correlate with the overlap of the lossy strip with the LM E-field, see Fig. 3.14.
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Figure 3.19. Zooms of color map of reflectance from Fig. 3.18-a near the LM
resonances L™ (a), Ly (b) and Lgo"™ (c); the frequencies of RAs, which correspond to
k=1, 2 and 3 at the normal incidence are 4.286 THz, 8.572 and 12.857 THz. Dashed
white lines show the resonance frequencies found from approximate equation (3.40).

Now, if we assume that the strips are narrow, so that the filling ratio is small,
s=0/x=d/p—0,then for all mand n s (s)=2s+0(s*), and then the complex
natural frequencies of LMs tend to real numbers that entails unlimited growth of Q:;.

The same happens if the substrate vanishes, i.e. if either ¢ »>1 or h—0. At arbitrary s,

dependences of Q-factors on s correlate with the overlap between the lossy graphene

strip and the mode electric field magnitude.
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For instance, if p=70um, h=1um, d=14 ym, T=300K, r=1ps and
1, =025eV, then f;"=4.3124 THz and Q" =431.15, while if it is 1 eV, then

f'*=4.2857 THz and Q% =107.79.

3.6 Regime of electromagnetically induced transparency

In this section, we focus on the EIT regime, which was mentioned in Section 3.5.
Here, we take T = 300 K and 7 = 1 ps, consider the normal incidence, and select the
strip width, grating period, and substrate thickness in the tens of um. This places the
frequencies of all natural modes to the THz range. However, similar effects take place
In the near-infrared if the mentioned parameters are taken in the tens of nanometers.

As known, the DC tunability of conductivity is the most important for applications
feature of graphene; it is quantified using the graphene chemical potential. Therefore, it

IS interesting to study the effect of 1 on the grating characteristics — see Fig. 3.20-a.
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Figure 3.20. Reflectance versus the frequency at the normal incidence on the grating
with period p =70 um, d = 7 um and h =10 um (a) at four values of the chemical
potential, 1 = 0.25 eV, 0.39 eV, 0.5 eV, and 1 eV and (b) zoom of the reflectance,
transmittance and absorbance of graphene-strip grating in the narrow band around P;,
Lo and RA; frequencies at 1. = 0.56 eV.
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It shows the behavior of the reflectance of the studied metasurface with p = 70 pum,
d =7 umand h =10 um as a function of the THz frequency, at normal incidence and
four values of graphene’s chemical potential, .= 0.25eV, 0.39eV, 0.5eV, and 1 eV.

Here, the marks RA; indicate the positions of the first and the second Rayleigh
Anomalies, where the +1-st and +2-nd diffraction orders start propagating. Broad bell-
like resonance at 5 THz is caused by the lowest SM, which is S,. Its frequency is
controlled by h and & (3.25) and does not depend on z. The sharp spikes just below
RAs are the LM resonances L1, and L™, respectively. They are controlled by the
grating period p and the wavelength of the lowest guided mode of the dielectric slab. A
moderate-Q peak, which shifts to the blue for the larger s is for the PM resonance, P;.
Note that the latter peak has Fano shape if it sits on the slope of the broader S, peak.

The PM frequencies and associated Q-factors of a single graphene strip can be
found analytically, viewing the strip as a one-dimensional surface-wave Fabry-Perot
resonator, i.e. neglecting the radiation losses of PMs. Then the approximate expressions

are obtained as (3.28) and (3.29), respectively. They show that both the graphene-strip
PM frequencies and their Q-factors scale as \/mg, /d .

This behavior is clearly visible on the color maps of the reflectance, transmittance
and absorbance of the same metasurface, shown in Fig. 3.21. These maps demonstrate a
complicated interplay of the tunable medium-Q plasmon-mode resonances, P, P, with
the fixed-frequency high-Q LM resonances, L* 1o, L', if their frequencies coincide.
Additionally, the background is set by the fixed-frequency low-Q resonance S;. The cuts

of these maps at . =0.56eV are shown in Fig. 3.20-b. Here, the broad peak of high

reflection on P, becomes split by a narrower band of very low reflection on L™y,
accompanied by the negligible absorption — this is EIT-1 regime. Similar however
weaker EIT effect takes place at a higher frequency where P, hybridizes with L™,
marked as EIT-2. Note that earlier the EIT effect was reported for the gratings of thin
silver nanostrips and nanowires in the visible-light range [45]; it appeared due to the
coupling between the low-Q PM and the ultrahigh-Q LM if their frequencies coincided.
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Figure 3.21. The color maps of the reflectance (a), transmittance (b) and absorbance (c)
versus the frequency and chemical potential, at the normal incidence of the H-polarized
plane wave at the same grating as in Fig. 3.18.

It is known that EIT takes place in electric circuits and even in mechanics when
two resonance contours are coupled, one with low Q-factor and another with high Q-
factor, and their frequencies coincide [115]. More recently, all-optical EIT effects
started attracting attention [116]; they can be found both in configurations with two
coupled cavities and within a single cavity. In our case, each graphene strip is an open
cavity, supporting the PMs, and the whole grating is also an open cavity, supporting the

LMs; they are optically coupled. What is less expected, the absorbance of the graphene-
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strip grating at EIT is extremely low. Moreover, the cuts through the maps of Fig. 3.21
at the frequency of EIT-1 and EIT-2, shown in Fig. 3.22 (a) and (b), respectively, reveal
practically total loss of tunability of the metasurface with respect to the chemical
potential. This combined effect has not been, apparently, reported earlier and is
explained by the same reason, which becomes clear after visualizing the near-field

pattern at EIT, i.e. at the LM frequency.
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Figure 3.22. The reflectance, transmittance and absorbance of the on-substrate graphene
strip grating of the same parameters as in Figs. 3.20 versus the chemical potential of
graphene at the frequencies of 4.1 THz, 4.16 THz (EIT-1 regime) and 4.3 THz (a) and
7.72 THz, 7.7334 THz (EIT-2 regime) and 7.74 THz (b).

In Fig. 3.23-a, such a pattern is shown for the absolute value of the magnetic field
(normalized by the incident plane wave magnitude) at the L™, frequency.

This pattern reveals two bright spots on the unit period, one at the strip and the
other at the slot. These two spots have opposite phases and such a standing wave is a
signature of the first-order LM (see Chapters 2 and 3). As already mentioned, at the L™,
resonance frequency this standing wave is formed by the +1-st Floquet harmonics,
which dominate over all other harmonics with amplitudes scaling as the Q-factor,

however remain attenuating at the normal to the grating direction, |y|—oo.
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Figure 3.23. The magnetic field pattern on four periods of graphene-strip grating at the
frequency of EIT-1 due to the hybridization of the LM resonance on L*;, and the PM
resonance on P, (a), and the magnetic field absolute value along the normal to the strip
midpoint, x = 0, at this frequency (b), for the same parameters as in Figs. 3.20-3.22 and
1. =0.56 eV.

The cut of the near magnetic field magnitude through the strip center (Fig. 3.23-b)
also shows a maximum at the strip, together with the field continuity. Now, one should
remember that, in the case of the H-polarization, the electric field vector is within a
constant the gradient of the magnetic field z-component. Therefore, the bright spots of
electric field appear at the nods of the magnetic field and vice versa. This means that, in
the LM resonance, the lossy graphene strips (which are one-tenth of the period in our
case) sit in the deep minima of the electric field. Besides, as the magnetic field in EIT is
continuous across the strip, then the induced electric current is close to zero. These LM-
field features minimize the graphene strip losses, which are a product of Re Z and the
integral, over the strip width, of the squared absolute value of the current.

In addition, these features spoil the tunability of the grating scattering
characteristics, in the sense that the DC bias, translated via the chemical potential, has

no effect on the transmittance-to-reflectance ratio of our metasurface. In the other
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words, in EIT regime, the graphene tunability as a material becomes irrelevant because
of a stronger all-optical mechanism, which is enforced by the periodicity.

Such a behavior is observed so far as the strips are narrow, narrower than
approximately a quarter of the period if the EIT is associated with the lowest LM, L™ 1.
If the strips are wider and approach a half of the period, then certain absorption appears
in the form of small bump at the LM frequency, and the bump height is larger for the
larger chemical potential. This is because, if the strips are wide, then their edges “stretch
out” of the near-zero E-field spots of the lattice mode L™, and therefore some current is
induced that leads to absorption. In the EIT regimes associated with the higher-order
lattice modes, L™, L5, etc., the strips have to be even narrower to spoil the tunability
because these mode E-fields have 4, 6, etc. near-zero spots on the period.

This interpretation is supported by the near magnetic field pattern and its

corresponding y-dependence, presented in Fig. 3.24-a and 3.24-b, respectively.

p=70 pm, d=7 um, =7.7334 THz, £&=2.25, a=90°, 1 =0.47 eV Pp=70 um, h=10 um, d=7 um, &=2.25, 1=0.47 eV, @=90°

259 x=0

—— 77334 THz| £

‘-2,0 15 10 -05 00 05 10 15 20 -2 -1 0 1 2
x/p y/p
() (b)

Figure 3.24. The magnetic field pattern on four periods of graphene-strip grating at the
frequency of EIT-2 due to the hybridization of the LM resonance on L*, and the PM
resonance on P; (a), and the magnetic field absolute value along the normal to the strip
midpoint, x = 0, at this frequency (b), for the same parameters as in Figs. 3.20-3.22 and
. =0.47 eV,
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Although the tunability of the scattering from the studied grating is lost at EIT, the
effect of the chemical potential is still present even then, however, in different manner.
As follows from (1.13) and (1.14), for the larger chemical potentials, graphene’s losses
scale approximately as the inverse chemical potential. Due to this, the IET band gets

slightly narrower if the potential is larger.

Conclusions to Chapter 3

Using MAR technique based on the analytical solution of the RHP as fast and
trusted numerical instrument, we have studied the interplay, in the whole THz range, of
the resonances in the plane-wave scattering and absorption, caused by the H-polarized
natural modes of three types. Two of them are well-known low-Q SMs of the substrate
and moderate-Q PMs of the graphene strips. Still, besides of them, the considered
composite metasurface possesses ultrahigh-Q LMs of various orders. The existence of
these modes is the consequence of two factors: periodicity and presence of the substrate.
This can be seen in the fact that their frequencies are tied to the RA frequencies but
shifted from them by the factors, which are determined by the normalized wavenumbers
of the guided waves of the substrate.

In the E-polarization case, we have used the mathematically grounded MAR-IDFT
technique to study numerically the scattering and absorption of THz-range
electromagnetic plane wave by the metasurface shaped as array of graphene strips on
flat dielectric substrate. With the aid of this trusted and efficient modelling instrument,
we have analyzed the effect of the resonances, caused by the E-polarized natural modes
of two types: low-Q SMs and ultrahigh-Q LMs of the whole configuration as a periodic
open resonator.

Additionally, assuming that the substrate is lossless but graphene strips are lossy,
we have derived the mathematically grounded full-wave asymptotic expressions for the
complex frequencies and Q-factors of Ps and LMs. These expressions are in good

agreement with numerical results.
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This analysis shows that LMs do not exist if the graphene strip grating is
suspended in the free space, in the sense that the corresponding complex poles are
located at the bottom sheets of the corresponding RA Riemann surfaces. However, if the
grating is supported by a dielectric substrate, these complex-frequency poles migrate to
the top sheets and appear from the red side of the RAs, which are the field function
branch points. The shift from RAs is controlled by the wavelength of the principal
guided wave of the dielectric slab substrate. This means that the LM Q-factors grow up
infinitely if strips get narrower or if the substrate gets thinner or if substrate’s contrast
with the host medium vanishes.

Remarkably, the LM frequencies are still tunable with the aid of the graphene
chemical potential, although within much narrower range than that of the strip plasmon
modes of the same grating in the case of the H-polarization.

Note that, even if the substrate is moderately thin, say, has the thickness of 1 um,
the LM Q-factors can reach 10', so that the numerical solutions must deliver 10 or
more correct digits. Such high accuracy is not accessible with any existing today
commercial code, however can be provided by our developed above MAR-based codes.

We have demonstrated that thanks to the tunability of PMs with the aid of
graphene’s chemical potential, it is possible to realize the DC-bias controlled
electromagnetically induced transparency in the THz range, on the metasurface of
microsize period. This can be useful in the design of novel tunable filters, modulators

and absorbers that use periodically patterned graphene.

The results related to Chapter 3 were published as journal papers [Al — A3] and
conference papers [A8 - Al1].
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CHAPTER 4
LASING THRESHOLD CONDITIONS FOR GRAPHENE STRIP GRATING ON
GAIN-MATERIAL SUBSTRATE

In the previous chapters, we studied the scattering and, in the case of the graphene
strips, the absorption of the H- and E-polarized plane waves by infinite flat strip grating
lying on flat passive (&”>0) dielectric substrate. This study has revealed multiple
resonance effects of different families and symmetry classes. Each of these resonances
Is caused by the underlining complex pole of the field as a function of the frequency.
These poles form discrete set on the complex domain of the frequency variation. They
coincide with the characteristic numbers of the corresponding matrix operator
equations, (3.15) for the H-polarization and (3.21) for the E-polarization. Thanks to the
Fredholm second-kind nature of these equations, each pole (i.e. its real part and its
Imaginary part) is a piece-continuous function of the other parameters, such as substrate
thickness, relative permittivity, grating period, strip width, and all the parameters of the
graphene. Here, substrate’s dielectric permittivity can be complex-valued — which
means that the poles are piece-continuous functions of both &'=Re& and ¢"=Ime¢. In
the case of non-magnetic materials, the same is true for the the real the imaginary parts
of the refractive index, v =v'+iv", becauses = &' +ig" = (V)2 — (v")? + 2iv'V".

The materials with &£" <0, or, equivalently, with v'>0 and v" <0, are the gain
materials, which can be semiconductors, erbium-doped crystals, or dye-doped polymers
demonstrating quantum effect of inverse population under the pump. For brevity, such
materials are commonly called “quantum” ones, and the quantity ¥ =—|v"| is called the
gain index. Then, each complex-frequency pole depends piece-continuously on
y=—|v"|. As explained in section 1.4, in the passive open resonators, where v" >0
and the radiation into the host medium is always present, the Complex Poynting
Theorem prohibits the existence of purely real mode frequencies. However, if v" varies
across zero and becomes negative, then real natural frequencies are possible.

Determining the value of ¥ =—|v"|, needed to make the mode frequency real, is the
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same as finding the threshold of lasing. Thus, as mentioned in Chapter 1, to model the
lasing modes at the threshold, it is necessary to look for the pairs of real numbers
(ky,7,) - this s to study the LEP.

In this Chapter, we investigate the H and E-polarized lasing modes of infinite flat
grating of graphene strips lying on dielectric-slab substrate, on the threshold of their
stationary emission. As in Chapter 3, the conductivity of graphene is modelled using the
Kubo formulas, while the substrate material is assumed to have gain that offsets the
radiation and ohmic losses and allows the modes to reach the lasing threshold. We look
for the frequency and the gain index threshold values, specific to each mode, as

eigenvalue pairs (eigenpairs, (kg,7.)). To find them, we reduce the field problem, in

each of two polarizations, to a DSE for the complex amplitudes of the Floquet spatial
harmonics, which we analytically regularize based on the inversion of the static part of
the grating-in-free-space problem. This yields a complex-valued Fredholm second-kind
infinite determinantal equation for eigenpairs. Increasing the matrix truncation number
guarantees the convergence of these quantities to their exact values. Using these
equations in combination with iterative root-search techniques, we determine the

eigenpairs with prescribed accuracy and thus, quantify the mode threshold conditions.

4.1 Modified eigenvalue problem formulation

We consider the 2-D LEP for a harmonic in time e, H and E-polarized
electromagnetic field in the configuration presented in Fig. 4.1. The grating of zero-
thickness infinite along z graphene strips is assumed infinite in x and lies on the top
interface (y =0) of the flat dielectric substrate. The strip width is d, the period is p, the
substrate thickness is h and its relative dielectric permittivity is =&’ +ig" = (a —iy)?.
Here, the refractive index « is known and the gain index » >0 is unknown. Within the
LEP, we look for the frequency and the gain index threshold, specific to each mode, as

the real eigenpairs, (k,y,), of the following boundary value problem for the function

H(r) or E(F), F=(X,Y), respectively:
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y
#1 M s e—iml
d p . X
#2
#3 -h

Figure 4.1. Cross-sectional view of laser built on infinite flat graphene strip grating
lying on gain-material substrate, and notations used.

it has to satisfy (I) 2-D Helmholtz equation at y=0,—-h, with real free-space
wavenumber off the substrate, k,=w/c=2x/ 1, and complex material wavenumber,
k =k,(a —1iy), where «,y >0, inside the substrate, (I1) resistive conditions at the strips,
reM:{y=0;|x+nplcd/2;n=0,+1,..}:

- in the case of the H-polarization,

E® +E® = zzzo[H ®_H <2)] , E® —E®, (4.1a)
- in the case of the E-polarization,

E® +EP =227, [HP -H?], E® =E?, (4.1b)
where Z is the complex-valued frequency-dependent graphene surface impedance, see
(1.15), normalized by the free space impedance, Z,=./x, / &, . Besides, the tangential
field components, H, and E, in the H-polarization and E, and H, in the E-polarization,
have to be continuous across the slots, i.e. at FeS:{y=0;—0<x<+oo}\M and at the

whole lower interface, y = - h, —o< x<+oo. Finally, the function H or E has to satisfy
(111) the radiation condition, and (IV) the condition of local finiteness of power. Note

that this boundary-value problem is the same as the scattering problem of section 3.2,
except the absence of the incident field and the presence of gain, y. Besides, it is

assumed, by default, that there is no phase shift between the periods/
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4.2 Reducing eigenvalue problems to determinantal equations

4.2.1 H-polarization case

In this case, to find the mode-specific LEP eigenvalue pairs (frequency f and gain
index 7), we follow Chapters 2 and 3, i.e. introduce Floquet series (2.8)-(2.10) for the
magnetic field H, use the boundary conditions (4.1) and others, and reduce the
electromagnetic field boundary-value problem to a DSE for the complex amplitudes of

the field Floguet harmonics,

o0

D X, |nje™ = i x Ae™ 6<p|<,
N=—ow

R (4.2)
> xe™ =0, |¢|<6,
where d=d/ p,
A =n|+i@+e)(T) +xZ), (4.3)
-1
S e ezigg'§+ s|+ e
o (97 - 9,6)e” + (g3 +9,8) | s

o0 97 (07 —g,6)e™ (9] +0,6)

and all notations are the same as in (2.7), (2.11), (2.22) - see Chapter 2, except that now
we use g, instead of ¥, . The left-hand part of (4.2) does not depend on the frequency; it
forms RHP on the unit circle, solution of which is known.

Thus, we perform analytical regularization of (4.2), based on the inversion of its
left-hand part and arrive at the matrix equation (3.21). Details of this procedure, which
makes use of the edge condition, can be found in [39]; see also Chapter 2.

As the considered configuration has the line of symmetry, which is the y-axis, we
can split equation (3.21) into separate x-even and x-odd mode equations using the

combinations, x> =x_+ x__. This procedure yields two infinite equations,

+ > Ahx; =0, m=0(),... (4.5)

Al =E AN (K yie, ph O[T, (O £T ., (0)], (4.6)
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where T_. (&) are combinations of the Legendre polynomials of the argument —cosé —

see Section 1.3 and & =1/2 if n=0 or 1 otherwise.

/ A
y y
x-even o x-odd e

B p
1# s M
A —1d -
+ + =+
2#
& &
3# -h -h

Figure 4.2. Representation of symmetry classes of the considered problem

Each of equations (4.5) is a Fredholm second kind operator equation. Therefore, its
determinant exists as a function of all geometrical and material parameters of the
problem. Then, due to the Fredholm theorems for operator-functions, characteristic

numbers of (4.5) are discrete on the plane (k,») and each depends continuously on the

problem parameters [117].
Moreover, Fredholm theorems guarantee that the characteristic numbers, found
from the truncated determinantal equation for the x-even and x-odd modes, respectively,

S +EAT T O =0 (4.7)

m,n=0(1) N

D (k, ) = Det

converge to the exact values with larger truncation numbers N [118].
Verification of the Fredholm property of the matrix equation is done analytically,
using the large-index expressions and estimations for the functions, involved into the

matrix elements (4.6).
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4.2.2 E-polarization case
Here, to find the LEP eigenvalues, we use the series expansions for E, and reduce

the EM problem to DSE for the Floquet-harmonic amplitudes, a,, n =0, £1, ... similar

to (3.20). On introducing new unknowns, A =&,,(1—2«xsina/T,)+a,, and notations,

(97 —g,)e" —(g5 +g,)e "

FE sl —, 48
n =900y (gﬁl—gn) lgn§+(gn +0, ) -ign& (4.8)
we cast the DSE to the following form:
0, ¢9<|¢|<7r
AT e = ° (4.9)
Z -gz Ae™, |g]<0

The left-hand part of (4.9) can be inverted analytically using the IDFT and the
orthogonality of the exponents as it is done in Chapter 3, thus yielding a matrix equation

for A . However, the rate of decay of the obtained matrix elements with larger |m| and

In| is different. To balance it, we use new variables, X = Aw.,w = (|n|+1)", split the

infinite matrix equation into x-even and x-odd equations, and finally arrive at the

following result:

Xy + Z AnXs =0, m=0(),..., (4.10)
n=0(1)
where
E W, (zwnrg)l[smn ) £S.,,0)], (4.11)

and S, (@) are given by (3.28). Verification of the large-index behavior of the matrix

elements Aﬁ'f, enables us to state that each of equations (4.10) is a Fredholm second kind
matrix equation in the space of sequences I,. Therefore, the Fredholm theorems

guarantee that the characteristic numbers, found from the truncated determinantal

equations for the x-even and x-odd modes, respectively,

N

D: (k

W (anl“f1 )_1(8 £S_0)

=0 (4.13)

m,n=0(1)

mn
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converge to the exact values with larger truncation numbers N. These values, or

eigenpairs, (k,y,), form discrete set.

4.3 Results of numerical study of mode threshold conditions
4.3.1 H-polarized laser modes
The roots of determinantal equations like (4.7) are usually sought for using various
iterative-search algorithms. Here, initial-guess values for (k,7) can be taken from at
least two different data.
First, the scattering problem solution (with ¥ = 0) can be used following section
3.3. In Fig. 4.3 (a), presented are the curves of the reflectance, transmittance and

absorbance for the parameters explained in the caption and the frequency, f =kc/2r,

varying from zero to 6 THz.

p=100 pm, d=50 um, h=30 um, £*=2.4 p=100 um, d=50 um, h=30 um, a=1.549
0.5 T

AW 11/

1.000E-28
.4
0 - 1.000E-29

- 1.000E-30

'L 1.000E-31

I 1.000E-32

—— Reflectance
Transmittance
Absorbanse

Power

o
N

- 1.000E-33

1.000E-34
1.000E-35

Figure 4.3. Spectra of the reflectance, transmittance and absorbance of the infinite flat
graphene-strip grating lying on passive dielectric substrate, for the normally incident H-
polarized plane wave (a) and color map of the x-even LEP determinant absolute value
for the similar plasmonic laser configuration with the gain substrate (b). The matrix
truncation number is N = 50. Graphene parameters are T = 300 K, 7 =1 ps, and
chemical potential x4, = 0.5 eV.

Threshold material gain, y

0 1 2 3 4 5 6 .0 1 2 3 4 ‘ 6

Frequency, THz Frequency, THz
(a) (b)
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Following section 3.5.1, we mark the resonances, which correspond to the SMs,
PMs, and LMs, as S;,P, and L; ., respectively. Then, in the LEP analysis, the initial

guesses can be taken as the peak reflectance frequencies and arbitrary small numbers for
the thresholds.
Second, a map of either of the determinant absolute values (4.7) can be built on the

plane (f,y), to visualize the minima and take them as initial guess.

In Fig. 4.3 (b), presented is a color map of the even-mode determinant of (4.7) for
the same parameters as in Fig. 4.3 (a). The minima on the map correspond to the LEP
eigenvalues. It is well visible that the frequencies of reflectance peaks and the mode
frequencies as in good agreement. Additional advantage of building a map of
determinant is that, for each mode, one can determine approximate value of the mode
threshold and further use it as initial guess in the iterative search algorithm. Therefore,
In our systematic analysis we have used the latter approach to initial-guess selection.

As a search algorithm, we used the residual inverse iteration technique (RIIT),
details of which can be found in [119,120], although a standard steepest-descent
algorithm of Matlab library could be also used. The advantage of RIIT is that it finds the
eigenvector together the eigenvalue.

In Fig. 4.4 we show color maps of determinants (4.7), for the x-even (a) and x-odd

(b) modes computed with N = 50, on the plane (f,y). Note that the values of the

“background” on this map start growing at the larger frequencies.

Here, the grating period, the strip width and the substrate thickness are in the
micrometer range, p =70 um, d =14 um, h =10 umand a = 1.5.

As explained, the minima on the maps correspond to the LEP eigenvalues, which we
will call, for brevity, the modes. The chosen parameters place the lowest natural mode
frequencies, for all mode types, to the THz range - on each map, in the frequency range
from statics to 10 THz there are over ten modes with rather different thresholds, y, from
around 1 to 10°. More exact values, refined with the aid of RIT algorithm., are

presented in Table 4.1.
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Figure 4.4. Color maps of the LEP determinants (absolute value) for the x-even (a) and
x-odd (b) modes of the laser from Fig. 4.1. The matrix truncation number is N = 50. The
grating and substrate parameters are indicated above the map. Graphene parameters are

T=300K, r=1ps,and x =0.39 eV.
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Table 1. Eigenpairs for the LEP in the case of the H-polarization

Pp=70pum,h=10pm,d =14 um, o =1.5, 11, =0.39eV, 7 =1ps
Mode Frequency, THz Threshold gain, » Q-factor
P 2.501655 0.152062 9.86
P, 3.881121 0.040944 36.6
Lo 4.165693 0.00424 353.7
Lo 4.162835 0.003903 384.3
S, 2.153888 1.231526 1.137
S, 5.176666 1.04789 1.441
S; 5.158333 1.083 1.385

The Q-factors are computed using the formula Q=a/y +0O(y), derived in [82],

taking into account that the overlap coefficient here equals 1.
As we can see, there is one very high-threshold x-even mode at around 2.2 THz — this
is the lowest SM, Sy, and two others on each map around 5.5 THz and 9.5 THz, which

are S;and S;, which are slightly perturbed by the presence of strips and have very

large radiation losses.

Further, on each map there is a sequence of modes, which have by order or more
lower thresholds and follow a hyperbola, f -y =const. These eigenvalues correspond to
the PMs of graphene strips. Indeed, following the derivation of analytical formulas
(3.29) and (3.29) in section 3, however, adapting it to the case of LEP eigenvalues, we

obtain the PM frequencies and associated threshold gain values as

B 2 1\3
ol \/ﬂ(m 0.25)Qc , 1 J (@ +1)°%d w10

2\ (@+Dd ™ 2ar\ z(m-0.25)0¢

where m= 1,2, ... is the mode index and Q is given in (1.17).

As one can see, the plasmon frequencies grow and their thresholds drop as a

JmQc/d, so that indeed f".y" =(a®+1)(4nar)™. Note that (4.14) are derived
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neglecting the interband contribution to the graphene conductivity. Therefore, these
expressions are not valid at the very high frequencies (lying in the visible range [87])
where the interband conductivity cannot be neglected. Besides, in (4.14) the radiation
losses of the plasmon modes are neglected in favor of the losses in graphene.

The plasmons of the odd indices belong to the class of x-even modes, and those of
the even indices — to the class of x-odd modes, appearing only on one of the maps.

The near-field patterns shown in Fig. 4.5 have been computed for N = 50 and the
same graphene and configuration parameters as in Fig. 4.4. They support our

identification of the plasmon modes.

f=2.501655 THz y=0.152062 f=3.881121 THz y=0.040944

P,
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(a) (b)
Figure 4.5. Magnetic field patterns on three periods for the PMs of graphene strips, x-
even P, and x-odd P,, for the same grating as in Fig. 4.4.
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(a) (b)
Figure 4.6. Magnetic field patterns on three periods for the x-even LM L;; (a) and x-odd

LM L, (b) for the same grating as in Fig. 4.4.



133

Still besides, there are two very low-threshold minima on each map of Fig. 4.4, at
4.16 THz and 7.7 THz, which correspond to the LMs of the whole grating as a periodic

open cavity, L, and L, respectively. These frequencies are red-shifted from the 1-st

order RA, which sits at 4.28 THz. The near fields, shown in Fig. 4.6, correspond to L;;
and Ly, respectively, and have been computed with N = 50.

Note that the lattice-mode fields are drastically different from the plasmon-mode
fields. They form the standing waves along the whole grating with the number of hot
spots per period being twice the index of the RA, which 1s “parent” for the LM. In Fig.
4.6, we have the modes L, (i.e. m = 1), so their fields have 2 very similar bright spots
on the period. The difference is in the spot location — they are at the strip and the slot,
for the x-even mode, and shifted by a quarter of period, for the x-odd mode.

In Fig. 4.7, we present the color maps of two determinants (absolute value) (4.13)
for the laser with much smaller unit-cell dimensions, p =3 um, d =35 nm, h =1 um,
however, larger refractive index, « = 1.949. Note that here the filling factor is very
small, d/p = 0.012 (narrow strips). The band of the frequencies is from 60 THz to 250

THz, i.e. in the infrared range, and the wavelengths are from 5 um to 1.2 um.

p=3 um h=1 um d=35 nm a=1.949 n_=0.75 eV 1=1 ps Det p=3 um h=1 pm d=35 nm 0=1.949 1 =0.75eV 1=1ps  pet
1 R— .

— . 1
f'rtﬂ"-:;;_—;_{;;__; — 3.490E-32 — Lalrses
ey 0.1
| - 2.512E-33 8.700E-34

0.01 4
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- 1.301E-35

1E-4

Threshold material, v
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Figure 4.7. Color maps of the LEP determinants (absolute value) for the x-even (a) and
x-odd (b) modes of the laser from Fig. 4.1. The matrix truncation number is N = 50.
Graphene parameters are T =300 K, =1 ps, and z, =0.39eV.

I 8.700E-36
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Comparing these maps with the previous case of Fig. 4.4, we see that now the
determinant absolute values vary at ultra-small level, from 10 to 10 and it is quite
difficult to see the minima, which correspond to the eigenvalues. This is, apparently,
because of some 50 times higher frequencies of the PMs and LMs.

To overcome this difficulty, we started looking for the eigenvalues as the zeros of the
other, real-valued quantity — matrix inverse condition number — see Fig. 4.8.
The condition number is defined as product of the matrix norm and its inverse norm,

so the inverse condition number is

N

N + N
m,n=0(1) XH(AT'”) mn=0(1) (414)

As a function of the frequency and threshold index, this quantity varies in much

Aur

1/C =[Cond+(k,7)]1={\

more moderate manner, see that color maps in Fig. 4.8. At the bottom edge, the red
arrows mark the positions of the RAs, which are the branch points, and the black arrows
mark the cut-off frequencies of the higher-order guided waves of the substrate.

On these maps, one can see the narrow valleys, which hide the mode eigenvalues
of the same three families: high-threshold SMs, moderate-threshold PMs, and ultralow-
threshold LMs. Their frequencies and threshold values of gain index. found by RIIT, are
presented in Table 4.2. They demonstrate that the x-odd lattice modes have the

thresholds several orders lower than their sister modes of the x-even class. Some of the

modes have extremely low thresholds — for instance, for the L, mode it has the order of

107, and for the mode L, it is at the level of machine precision, 107,

In Fig. 4.9, we show the magnetic field of the principal SM in the near zone. The
strip is shown as white box and the dielectric-air boundaries are shown as black dotted
lines Note that the magnetic field at the substrate middle section is almost zero, similar
to the slab without strip where it is exactly zero. Very narrow strips of 35 nm (d/p =
0.0117) perturb this pattern, however, very gently.

In Fig. 4.10, we show the field patterns of the first two PMs, P; and P,.
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Figure 4.8 Color maps of the LEP inverse condition number for the x-even (a) and x-
odd (b) modes of the same laser configuration as in Fig. 4.7. The matrix truncation
number is N = 50.
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Table 4.2. Eigenpairs for LEP in the case of the H-polarization

p=3um,h=1pm,d =35ntm, o =1.949, 1. =0.75eV, 7 =1ps
Mode Frequency, THz Threshold gain, » Q-factor
X 63.428217 0.00425 458.67
P, 159.055761 0.00192 1015.2
L, 76.23657 7.794*10° 2.50%10°
Lo 76.217061 3.469*10™" 5.62*10"
L, 122.290800 1.872*10” 1.04*10’
Lo 122.287012 5.693*10™° 3.42*10°
L, 169.032243 3.46183*10° 5.63*10’
Ls, 169.031012 5.262*10™" 3.70*10"°
S, 13.05555 1.866 1.045

f=13.055555 THz, y=1.866
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Figure 4.9 Magnetic field pattern on one period for the principal SM of substrate, S; .
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Figure 4.10 Magnetic field patterns on one period for the x-even mode P; and x-odd P-.
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They display the fields, which are tightly bind to the strips, with the number of

bright spots corresponding to the mode index, and x-even or x-odd symmetry.
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In Fig. 4.10, we show the field patterns of the first three LMs, L, L5, and
L, created by the 1-st RA and the principal guided wave of the substrate, TMj.
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Figure 4.11. Magnetic field patterns on one period for the x-even (left column) and x-
odd (right column) LMs L, L5, and L, for the same grating as in Fig. 4.8 — 4.10.
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In Fig. 4.12, presented are color maps on the plane (f,;) of inverse condition

numbers (4.14), computed for the E-polarization matrices (4.10) with N = 50.
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Figure 4.12. The color map of the LEP inverse condition umber for the x-even (a) and
x-odd (b) E-polarized modes of the laser from Fig. 4.1, on the plane (f,;). The matrix

truncation number is N = 50. Graphene and grating parameters are T = 300K, =1 ps,

£=0.39eV,p=3um,d=15um,h=1pum, o = 1.949,
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The minima on the map correspond to the LEP eigenvalues — i.e. the E-polarized

modes of the considered laser model. They are taken as initial-guess values. More

accurate values for the LEP eigenpairs, plus the corresponding Q-factors, are presented

in Table 4.3 after the search using the RIIT algorithm.

Table 4.3. Eigenpairs for LEP in the case of the E-polarization

Mode Frequency, THz Threshold gain, » Q-factor
p=3um,h=1pm,d =35nm, ¢ =1.949, 4. =0.75eV, 7z =1ps
Ly 64.317705 6.427*10" 3.03*10°
L, 64.311292 2.536*107™ 7.68*10°
L, 97.785096 5.541*10” 3.51*10°
L 97.778700 6.656*10™ 2.92*10"
Lo 114.347958 7.819*10° 2.49%10’
Ly, 114.345774 1.185*10™"° 1.64*10"
L, 147.153849 1.329*10”’ 1.46*10’
L 147.149350 1.865*10"° 1.05*10%
L, 192.111694 9.368*10° 2.08*10’
L, 192.108106 1.557*10™"° 1.25*10"
L%, 163.995534 2.205*10°° 8.84*10’
Lso 163.994646 6.819*10™ 2.86*10™
L, 192.638927 4.157*10°® 4.69*10’
L, 192.636787 1.523*10™° 1.28*10"
S, 13.155914 1.857 1.0497
sy 85.41519 0.569 3.4259
s; 159.29152 0.324 6.0165
s: 239.513 0.198 9.8452

+

One can see several high-threshold eigenvalues — these are the lowest SMs, Sg, ,,

which have very large radiation losses and, hence, high thresholds. In the E-
polarization, there are no plasmon modes. However, there are several ultralow-threshold

minima on each map, which correspond to the LMs of the whole grating as a periodic
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open cavity, of the x-even and x-odd classes. Note that their thresholds are 5-6 orders
lower than those of the SMs.

In Figs. 4.13 to 4.16, we present the LM near E-field patterns computed with N =
50 and the same graphene and configuration parameters as in Fig. 4.12. Here, the
graphene strips are marked as white straight boxes and the dielectric-air boundaries are

shown as black dotted lines.
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Figure 4.13. Electric field patterns the x-even modes S; (a), S; (b) and S; (c).
The patterns show integer number of bright field spots on elementary period (2m,
along the x-axis) and across the substrate (M, along the y-axis). The first index
corresponds to the “parent” RA number (and hence the resonating Floquet harmonic
number) and the second index corresponds to the type of the “parent” natural wave,

TEm, (M =0,1,2, ...) guided by the substrate as an open waveguide. This explains our

notations in the LMs identification, L, .
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Figure 4.14 Electric field patterns the x-even (left column) and x-odd (right column)
LMs, L, (top row) and L, (bottom row).

In Fig. 4. 14, presented are the near-field patterns of the LMs, created by the
principal guided wave of the substrate, TM, (M = 0) and the first higher-order wave,
TM; (M = 1), near the 1-st RA. The higher-order wave of the substrate is responsible for
the zero field near the median section of the substrate. Note that the x-even and x-odd
modes of each type have very similar fields, differing by the shift along the x-axis by

the quarter of period. Their frequencies of emission are also very close to each other —
for the L, modes they are 64.317705 THz and 64.311292 THz, and for the L, modes,
they are 97.785096 THz and 97.778700 THz, respectively. However, the threshold gain
values are drastically different, for the L: modes they are 107 and 10, and for the L

modes, they are 107 and 10™*, respectively. This is because for the x-even modes the

lossy strips are in the E-field maxima, while for the x-odd they are in the minima.
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In Fig. 4.15, we show the near field patters for LMs, created by the 2-nd RA and
three guided waves of the substrate, TMywith M =0, 1 and 2, i.e. L, L5, and L, .
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Figure 4.15. E-field patterns of the x-even (left) and x-odd (right) LMs L, L5, L5, .
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They show the same regularities: the fields (besides of the p/8 shift) and the
frequencies of the sister modes of each even-odd doublet are very close to each other,
while the gain thresholds are drastically different — 10® and 10™, respectively.

Further, in Fig. 4.16, we present the near-field patterns for the even-odd doublets of

the modes, created by the 3-rd RA and two guided waves of the substrate, TMy, with M

=0,1,ie. L, and L. They display the same regularities as explained above.
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Figure 4.16. E-field patterns of the x-even (left) and x-odd (right) LMs L, L, .

Finally, we present the results of the computation of the L, frequencies and

thresholds as a function of the squared substrate refractive index, of — see Fig. 4.17 and
Fig. 4.18 for the x-even and x-odd LM, respectively, and for three values of the

substrate thickness.



144

p=3 um d=35 nm p,=0.75 1=1ps

1 " 1 " 1 L 1 L | L | L | L 1 L 1
\

103 ——r!

100 ~

©
(&)}
1

Frequency, THz
8

85 -
E-polarization ’
80 \ i
even N
78 T T T T T T T T T T T
18 20 22 24 26 28 30 32 34 36 38 40
cx2
(@)
p=3 um d=35 nm p.=0.75 1=1ps
1.8E-6 4 U NSRRI R S R SR R L
1.6E-6 - h=1um | E-polarization 3
I——h= + E
14E-6 3 h=1.1 um e ]
{——h=15um
>~ 1.2E-6 -
£ § 3
> 1E-6 :
k) = 3
- i :
®»  8E-7 2
o ] o
E 4
L
=

667 ] \:—

deETt+——FT T T T T T T T
18 20 22 24 26 28 30 32 34 36 38

0(.2

(b)

Figure 4.17. Dependences of the x-even LM frequency (a) and threshold gain (b) on the
refractive index of the active substrate for three thickness values. Other parameters are
as marked. On panel (a), dashed lines show the substrate waves cut-off frequencies and
the dotted straight line marks the RA frequency.
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Here, the horizontal dotted line at 100 THz marks the 1-st RA (the branch point).
The dashed lines mark the variation of the cut-off frequency of the 1-st higher-order

guided wave of the substrate, TM;.
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Figure 4.18. The same as in Fig. 4.17, however, for the x-odd LMs.
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As visible, if the refractive index of the substrate gets down, the LM frequency
grows until it reaches the RA frequency at the same value of the refractive index as the
cut-off frequency of the “parent” guided wave, TM;. The threshold varies little around
107 and 10 respectively (this level is apparently determined by the losses in

graphene) until it jumps up by an order in the very close vicinity of the RA.

Conclusions to Chapter 4

We have considered a mathematical model of the H and E-polarized natural modes
of the laser built on infinite grating of graphene strips on active (i.e. made of the gain
material) substrate, on the threshold of stationary light emission. This model lies
entirely in the framework of the classical electromagnetics except the description of the
graphene conductivity, which is borrowed from the quantum theory. The corresponding
LEPs for the H- and E-polarized modes have been reduced to the determinantal
equations. Similar to the wave-scattering problems, our treatment is based on the
analytical inversion of the static part of the problems associated with grating in free
space with the aid of the RHP and IDFT techniques, respectively. As a result, the
matrices, which generate the determinantal equations, are of the Fredholm second kind.
This provides a mathematical proof of the convergence of the characteristic numbers of
the truncated determinantal equations to the sought-for eigenvalues if the matrix
truncation order gets larger. Using the developed algorithms, we have computed the
LEP eigenpairs, associated with various lasing modes of the micro or nanolaser shaped
as graphene-strip grating on the gain substrate and discussed their characteristics.

In the H-polarization case, we have studied the plasmon modes, which are tunable
in wide range with the aid of the chemical potential of graphene (which is proportional
to DC bias). This tunability concerns both the PM frequencies and their Q-factors.

The lowest thresholds are found for the lattice modes, which exist in either

polarization. The above presented results of LEP analysis, together with the accurate
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study of the H- and E-polarized plane-wave scattering from the graphene strip grating
on passive dielectric substrate (see Chapter 3), convincingly prove that the LMs (I) do
not have “plasmonic” nature (as frequently assumed); instead, it they are caused by the
periodicity, and (I1) are mediated by the guided waves of the dielectric substrate or, in
broader sense, the guided waves of the host medium. The former circumstance yields
the main term in the LM frequency — this is the “parent” RA frequency. The latter
circumstance yields the main term in the redshift from the RA frequency. In the wave
scattering scenario, each LM generates a complex pole of the field as a function of the
frequency, either on the physical (top) or non-physical sheet of the square-root Riemann
surface; that pole can have ultra-small imaginary part (i.e. ultrahigh Q-factor). In the
lasing mode threshold scenario, each LM can have ultralow threshold value of the
material gain in the active region.

The results related to Chapter 4 were published as conference papers [A6, A7,
Al2].
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CONCLUSIONS AD RECOMMENDATIONS

- We have considered the H and E-polarized plane wave scattering by an infinite
grating of graphene strips on dielectric substrate

- Our treatment is based on the analytical inversion of the problem singular part
with the aid of modified RHP technique and IDTF solution, respectively, and yields the
Fredholm second kind matrix equations

- Convergence of the resulting numerical algorithm is guaranteed and has been
demonstrated

- We have validated our code with the results of other works computed using
another convergent algorithm

- Using this extremely fast and reliable numerical code, we have analyzed
interplay of the resonances in the THz plane-wave scattering and absorption. Thanks to
the tunability of the plasmon modes with the aid of graphene’s chemical potential,
controlled with electrostatic bias, the metasurface reflectivity can be manipulated in
wide range. We have shown, for the first time, that the grating tunability is completely
lost at the regimes of the electromagnetically induced transparency, caused by the
excitation of the high-Q lattice-mode resonances. This effect should be taken into
account when designing the THz and infrared circuit components.

- We have also considered, for the first time, the threshold conditions for the H
and E-polarized lasing modes of infinite flat grating of graphene strips lying on gain-
material substrate

- We have reduced the LEP eigenvalues, associated with lasing modes of the
considered plasmonic nanolaser, to the determinantal equations generated by the
Fredholm second kind matrix operators

- The lowest thresholds are found for the lattice modes, while the best tunability
is demonstrated by the plasmon modes; besides, we found the substrate modes, which
have very high thresholds.
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