GROUND PENETRATING RADAR "ODYAG"

Probing manually

Result of probing of the road

Testing

Results of tests

Parameters	The actual value from	Estimated value using the
	the core, cm	results of GPR surveys, cm
Site 519 km.		
Package thickness of asphalt layers	10,5	10,12
The thickness of the	The upper layer - 5,5	The upper layer - 5,17
first and second layers	The lower layer - 5,0	The lower layer - 4,94
Site 528 km.		
The thickness of the	The upper layer - 6,0	The upper layer - 5,99
first, second and third	The second layer - 4,0	The second layer - 4,09
layers	The third layer - 4,0	The third layer – 3,91

Thickness of asphalt layers

Areas of Application

Monitoring of pavements.

Specification

Probing impulses: amplitude 75 V; rise time 0.4 ns. Antenna: frequency band $0.8 \div 1.6$ GHz. Sampling receiver: noise level 0.2 mV; sampling step – 10 ps; increase of the transient response 0.2 ns; synchronization reading error < 3 ps. Observation interval: 2 µs. Collects data at speed up to 70 km/h every 23 cm.

Advantages

Isolation (Patent UA81652). Direct signals from the radiating antenna are attenuated to the receiver input up to -65 dB. Amplitudes of the useful signal are increased. Variable sample duration and its optimization (Patent UA96241) increase the signal/noise ratio. High stability of synchronization allows accumulation of signals. Analog accumulation at receiving expands operating bandwidth and increases the signal/noise ratio. Improvement of energy performance increases probing depth, accuracy of localization of subsurface objects and the ability to detect low contrast objects.

Stage of Development

IRL6, TRL5. There is testing a prototype system in an appropriate environment.

IPR Protection

IPR1, IPR3

Contacts

Logvinov Yuriy Fedorovich; O.Ya.Usikov Institute of Radiophysics and Electronics, National Academy of Sciences of Ukraine; +38-057-315-20-09; logvinov@ire.kharkov.ua