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Abstract
The plane wave scattering and absorption by an infinite flat graphene strip grating in the free
space are studied in the THz range in the H- and E-polarization regimes. Accurate numerical
treatment is based on the dual series equations and the analytical regularization technique. The
resulting numerical algorithm possesses guaranteed convergence and controlled accuracy of
computations. Reflectance, transmittance and absorbance by the graphene-strip gratings are
studied as a function of various parameters. In the H-polarization case, the dominant feature is
the excitation of the surface plasmon resonances on each strip. In the E-polarization case,
Rayleigh anomalies are the only observable features.
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1. Introduction

This paper presents a mathematically grounded study of the
absorption and scattering of THz waves by a flat graphene-
strip grating in free space (see figure 1). Such suspended-
graphene structures, although less usual than substrate-on
configurations, are also under study today [1, 2]. In addition,
such an analysis enables one to see clearly what features in
the scattering and absorption are characteristic to the grating
itself that can be useful when comparing them to the more
complicated effects observed for the substrate-on gratings.

Graphene is a single-atom layer which displays good
electron conductivity that depends on frequency, temperature,
electron relaxation time and chemical doping [3]. Thus, it can
be simulated as a zero-thickness imperfect and partially
transparent conductor, i.e. an electrically resistive sheet
characterized with frequency-dependent complex valued
resistivity. Graphene is also famous for its strong interaction
with electromagnetic waves of the THz frequency range [4–
13]. Thanks to the properties of its conductivity a sheet of
graphene is able to support delocalized surface plasmon
waves at frequencies two orders of magnitude lower than the

noble metals. Compared to metals, the most interesting for the
applications feature of graphene is the opportunity to modify
its conductivity by applying an external electrostatic biasing
field, which modifies graphene chemical potential. In practice,
this can be arranged by including a thin metal or semi-
conductor layer below the dielectric substrate, which supports
graphene, and by applying a DC bias between two layers.

Patterned graphene offers more degrees of freedom in
manipulation with THz waves. Its prospective applications
are multiple and include fixed and reconfigurable periodic
frequency selective surfaces, plasmonic waveguides, tunable
switches, infrared and THz sensors, antennas and absorbers
[4–11]. Here, the periodic arrays of graphene strips have
already attracted the attention of researchers as easily manu-
factured frequency-selective surfaces and efficient absorbers
in the THz frequency range. Their analysis meets the same
difficulties as for the resistive-strip gratings at microwaves in
which the resistivity has been usually assumed to be a real-
valued constant [14–17].

The wave scattering and absorption by an infinite grating
of coplanar graphene strips have been analyzed using the
Fourier expansion method [6, 10] and commercial solvers
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such as Comsol [7–10], and the plasmon-assisted resonances
in the H-polarized plane have been reported.

Unfortunately, while able to reveal basic physical effects,
the Fourier method does not lead to a convergent numerical
algorithm in the case of H-polarization scattering by a resis-
tive strip grating. Indeed, as noted in [17], inspection of the
elements of the matrix equations derived in [14] and [16]

shows that they do not decrease with larger indices and
therefore are not able to yield a convergent solution for pro-
gressively larger values of the order of truncation. Practically
speaking, this means that although a few digits in the solution
can be found correctly, the algorithm fails to yield the results
with better accuracy. Note further that the accuracy of
numerical solutions obtained with commercial solvers cannot

Figure 1. Cross-sectional geometry of a graphene-strip grating scattering problem (a) and a close view of the graphene layer (b).

Figure 2. The spectra of the power fractions of transmittance, reflectance and absorbance for the graphene-strip grating with the period
d= 100 μm under the normal incidence (φ = 0°) of the H-polarized (solid curves) and the E-polarized (dashed curves) plane wave. The strip
widths are 2 w= 20 μm (a), 50 μm (b) and 80 μm (c).
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be controlled by users. Any solver is advertised as accurate
and convergent however remains a ‘black box’ whose internal
structure and underlining mathematics is known to devel-
opers only.

In contrast, in [11] the scattering by finite and infinite
graphene strip gratings has been treated using the singular
integral equations and Nystrom-type quadrature formulas for
their discretization. The convergence of this approach is
guaranteed by the mathematical theorems about the approx-
imation of integrals by quadratures. This has enabled accurate
quantification of properties of the graphene-strip gratings,
including plasmon resonances. We have used the results of
[11] as a reference; as both methods generate convergent
numerical algorithms, we could see a coincidence in the
obtained data within an arbitrary number of digits, controlled
by the order of discretization.

Our approach to the electromagnetic analysis of gra-
phene-strip gratings uses the method of dual series equations
and analytical regularization developed in [17, 18] and sup-
plemented with the model of graphene conductivity of [3].
This latter model is based on the Kubo formula and leads to
the frequency-dependent resistivity, also called surface
impedance, in view of its complex value. Regularization can
be alternatively achieved by using the singular integral
equation and its projection to certain polynomials, as in [19].
The convergence of the algorithm developed on this basis is
guaranteed by the Fredholm theorems because the resulting
matrix equations are of the Fredholm second kind. Then, the

accuracy of the solution is easily controlled by the matrix
truncation order. Another attractive feature is that the accu-
racy does not depend on the relation between the size of the
strip and the period of the grating. Finally, the conservation of
power is kept at the level of machine precision for arbitrary
frequency and grating parameters.

2. Problem statement and basic equations

Consider the 2D scattering of a time-harmonic plane wave by
a grating made of graphene strips, as is illustrated in figure 1.
Assume that the time dependence is given as ω+e .j t An infinite
number of zero-thickness conducting strips, parallel to the z-
axis, is located in the plane x= 0 with period d. Each strip has
the width 2 w. The propagation vector of the incident plane
wave makes the angle φ with respect to the negative x-axis.
The field, scattered by the grating, should satisfy the Helm-
holtz equation and the boundary conditions that couple the
tangential field components on the strip surface
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Figure 3. (a) Reflectance, transmittance and absorbance as a function of the frequency for the scattering of the H-wave from the grating of
narrow graphene strips. φ = 0°, 2 w= 20 μm and d = 70 μm. The graphene parameters are τ= 1 ps, μc = 0.39 eV and T = 300 K. (b)–(d) The
magnetic field patterns on the elementary period in the surface-plasmon resonances P1 at f= 2.59 THz, P3 at f= 5.25 THz and P5 at
f= 6.94 THz, marked with dotted lines in (a).

3

J. Opt. 17 (2015) 055604 T L Zinenko



Here, σ=R 1/ , σ is the graphene surface electron conductiv-
ity, the superscript ±indicates the limiting value of the
function at → ±x 0, the subscript T components tangential
to the strips and ⃗x is the unit normal vector.

For the uniqueness of the solution, we complete the
formulation, similarly to [17–19], with the edge condition and
the radiation condition at → ±∞x . The latter condition
demands that the field power contained in any finite domain,
including a strip edge, is bounded [20]. The former requests
that the field is expandable in terms of convergent series of
the outgoing (finite number) and exponentially decaying
(infinite number) Floquet–Rayleigh spatial harmonics (i.e.
diffraction orders).

The scattering problem consists of the finding of the z–
component (i.e. Ez or Hz, depending on polarization) of the
total electromagnetic field, = +U U U .inc sc The incident field
function corresponding to the plane wave incident at the angle
φ to the x-axis is given by = φ φ− +U e .inc

jk x y( cos sin )0 The
grating periodicity along the y-axis assures a quasi-periodicity
of the total field + =U x y d U x y( , ) ( , ). Due to this fact the
scattered field can be expanded in terms of the Floquet series
like

∑=
>
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where an and bn are the amplitudes of the Floquet harmonics
in transmission and reflection half-space, respectively,
α β= −k( )n n0

2 2 1/2 and β β π= + n d2 /n 0 are the propagation
constants of the spatial harmonics of the nth order, k0 =ω/c
and ω is the cyclic frequency. In addition, in the case
considered in this paper, the radiation condition requires that
for each mode, either α ⩾>Re 0n 0 or α ⩽Im 0,n owing to
the ω+e j t time dependence.

Consider first the H-polarized wave case, where
⃗ ⃗=H H z ,T z 0 ⃗ ⃗=E E y ,T y 0 and ζ= ∂ ∂E j k H x( / ) / .y z0 0 The

amplitudes an and bn are coupled by the boundary conditions
(1) on the strip and the continuity conditions across the slot
domain. Hence, the equation =+ −E x y E x y( , ) ( , )t t is valid for
all y and x = 0. This yields bn = −an, so one set of coefficients,
say, bn, can be excluded from further consideration.

To determine the coefficients an we use the dual set of
boundary conditions that hold on complimentary subintervals
of strip (M) and slot (S) on the elementary period, namely

+ = − ∈

= ∈

+ − − +

+ −

( ) ( )E E R H H x y M

H H x y S

1

2
, ( , )

, ( , ) . (3)

y y z z

z z

By introducing the notations φ π= − y d2 / , θ π= w d2 / ,

ϕ κ= − +g n[1 (sin / ) ] ,n
2 1/2 κ= ∣ ∣ −r n j gn n and using the

Figure 4. (a) Reflectance, transmittance and absorbance as a function of the frequency for the scattering of the H-wave from the grating of
wide graphene strips. φ= 0°, 2 w= 60 μm and d= 70 μm. The graphene parameters are τ = 1 ps, μc = 0.39 eV and T = 300 K. (b)–(d) The
magnetic field patterns on the elementary period in the surface-plasmon resonances P1 at f= 1.22 THz, P3 at f= 2.89 THz and P5 at
f= 3.897 THz, marked with dotted lines in (a).
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series (2), we arrive at the dual series equations (DSEs)
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where ζ μ ε= ( / )0 0 0
1/2 is the free space impedance. It should

be noted that κ= Οr ( ),0 κ κ= Ο + ∣ ∣r n(1 / ),n = Οg (1)0 and

κ= Ο ∣ ∣≠g n( / )n 0 at κ ∣ ∣ →−n 0.1 Owing to this fact the
singular (static) part of the DSE operator (i.e. the part
corresponding to →k d 0)0 can be inverted using the
Riemann–Hilbert problem (RHP) technique. The exact
analytical solution to the RHP, as given in [21], yields an
infinite system of linear algebraic equations. In operator form
it can be presented as follows:

+ =( )I A X B , (5)H H
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and coefficients θT ( )mn are the combinations of Legendre
polynomials and can be found in [15, 19]. Using the large-
index asymptotics of these polynomials, one can verify that

θ = ∣ ∣ ∣ − + ∣− −T O mn m n( ) ( 1 )mn
1/2 1 for all θ. This allows

one to prove that the L2 operator norm ∣∣ ∣∣ < ∞A 2 and hence
(5) is a regularized matrix equation, i.e. of the Fredholm
second kind. It can also be shown that the solution based on
(5) satisfies the edge condition. This is due to the fact that the
edge behavior is taken into account explicitly when inverting

Figure 5. The spectra of the power fractions of transmittance, reflectance and absorbance for the graphene-strip grating with the period
d= 70 μm under the oblique incidence (φ = 30°) of the H-polarized (solid curves) and the E-polarized (dashed curves) plane wave. The strip
widths are 2 w= 20 μm (a), 40 μm (b) and 60 μm (c). The graphene parameters are τ= 1 ps, μc = 0.39 eV and T= 300 K.
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the RHP [21]. Note that to arrive at (5), we have avoided the
meshing of the strip and have not used numerical integration
to fill in the matrix. Additionally, since at κ = 0 all matrix
elements equal zero, (5) yields the exact analytical solution in
the static case.

The Fredholm nature of the matrix equation (5) justifies
the truncation to finite order when solving it numerically
because solutions obtained with progressively larger orders of
truncation lead to smaller errors. Thus, the convergence, in
mathematical sense, is guaranteed. Note that the matrix ele-
ments and the right-hand part elements are the combinations
of elementary functions and can be easily computed to
machine precision. Then, the accuracy of the numerical
solution is controlled by the order of truncation. In addition,
for the Fredholm second-kind matrices, the condition num-
bers (i.e. the product of the norm of the matrix and the norm
of the inverse matrix) are finite and usually quite moderate. In
other words, equation (5) is well conditioned for an arbitrary
set of the problem parameters.

This is in contrast to the Fourier-expansion method and
its derivatives used in papers [6, 14, 15] in which con-
vergence is absent and as a result the accuracy is limited to a
few first digits.

Consider now the E-polarized wave case. Then,
⃗ ⃗=E E z ,T z 0 ⃗ ⃗=H H z ,T y 0 and = ∂ ∂H jk E x(1/ ) / .y z0 Instead of

(3) we have now the dual conditions
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From the continuity of electric field tangential compo-
nents on the strip, it follows that =a bn n in this polarization.
By using conditions (6), we obtain a series equation as fol-
lows:
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The left-hand side of (7) can be inverted analytically by
using inverse Fourier transform and the orthogonality of the
exponents. This leads to the following set of equations:

∑
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Figure 6. (a) Reflectance, transmittance and absorbance as a function of the frequency for the scattering of the H-wave from the grating of
graphene strips. φ = 300, 2 w= 20 μm, d= 70 μm. The graphene parameters are τ = 1 ps, μc = 0.39 eV and T = 300 K. (b)–(d) The graphene
parameters are τ = 1 ps, μc = 0.39 eV and T = 300 K. (b)–(d) The magnetic field patterns on the elementary period in the surface-plasmon
resonances P1 at f= 2.54 THz, P2 at f= 4.11 THz and P3 at f= 5.22 THz, marked with dotted lines in (a).
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where = ± ±m 0, 1, 2,... and the functions θS ( )mn are

ϑ θ
π

ϑ θ
π

= −
−

=S
n m

n m
S( )

sin( )

( )
, ( ) . (9)mn mm

Further, note that the rate of decay of the matrix elements
of (8) with respect to the large ∣ ∣n and large ∣ ∣m is different. To
symmetrize it, we introduce new variables, =x a wn n n with
the weight = ∣ ∣ +w n( 1)n

1/2 and arrive at the matrix equation

+ =( )I A X B , (10)E E
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Here, ∣∣ ∣∣ < ∞AE in L2 for any ≠R 0, since for large |m|
= ∣ ∣ ∣ − + ∣− −A O mn m n( 1 ).mn

E 1/2 1 Hence, (10) is an opera-
tor equation of the Fredholm second kind. One can show that
the field and current components built after solving (10)
satisfy the edge condition. Note that no meshing of the strip is
used, and no numerical integration is needed to fill in the
matrix. Additionally, at κ = 0 all matrix elements equal zero
except A n

E
0 that allows one to obtain the static problem

analytical solution.

3. Numerical results

Turning to numerical results, we present in figures 2 to 4 the
frequency dependences of the power fractions of transmit-
tance (T), reflectance (R) and absorbance (A) for three gratings
illuminated by the normally incident H- and E-polarized plane
waves of unit amplitude. Similar results are also shown for
the oblique incidence in figures 5 and 6. Note that they satisfy
the power conservation equation + + =T R A 1 at the level
of machine precision.

In the computations, we have used the Kubo formula for
characterization of the complex-valued electron conductivity
of the graphene monolayer [3]. In addition, we took the strip
width well above the 100 nm value that is considered as a
limit for the use of Kubo formalism, as according to [22], the
conductivity of narrower strips starts depending on the edge
effects. The truncation orders of the matrix equations (5) and
(10) have been adapted accordingly to the formula

κ= + ∣ ∣ +±N R(1 ) 101/2 in the H-case and E-case, respec-
tively, to provide 4-digit accuracy, even in the high-frequency
part of the studied range.

In the case of the H-polarization, one can see a sequence
of resonances on the surface-plasmon modes excited on every
strip. Each of these modes can be interpreted as a Fabry–Perot
standing wave formed by the reflections of the surface-plas-
mon natural wave of a graphene monolayer from the strip
edges [23] (note a misprint in equation (14) of [23]). The
complex propagation constant of this wave can be found

analytically using the conditions (1), which yield

γ ζ σ ζ= − = −( ) ( )k R k1 2 / 1 2/ . (11)pl 0 0
2 1/2

0 0
2 1/2⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Neglecting the losses and assuming a zero reflection
phase of such a wave from the strip edge, the resonance
frequencies can be found as roots of approximate character-
istic equations, of which the common form is

γ ≈( )wsin Re 0, (12)pl

which yields γ π≈ =w s sRe , 1,2,3,...pl Here, the roots, i.e.
the natural frequencies of the odd and even with respect to the
strip center modes, correspond to the odd =s( 1,3,...) or even

=s( 2,4,...) values of the index, respectively. Note that in the
case of the normal incidence (figures 2 to 4) only the odd-
index surface-plasmon resonances are excited because of their
modal field symmetry across the strip center; the even-index
resonances need inclined incidence.

In the E-polarization case, the frequency dependences of
the transmittance, reflectance and absorbance are much
smoother than in the H-case as the surface-plasmon natural
modes are absent. This is because the corresponding infinite
sheet of graphene cannot support surface-plasmon waves in
the E-polarization, i.e. with the electric field parallel to the
sheet. The only visible features are the ±1-st and the ±2-d
Rayleigh anomalies at 3 THz and 6 THz, respectively, deno-
ted in figure 2, where the period of 100 μm is a multiple to the
wavelength.

As one can see from the plots in figures 2 to 6, the
position of the first plasmon resonance depends on the strip
width. At the frequencies lower than this resonance, say,
below 0.5 THz (exact value depends of the graphene chemical
potential and other parameters), the graphene-strip grating
displays the discrimination of polarizations: the H-polarized
wave is well transmitted, while the E-polarized wave is well
reflected. This property can be used in the design of tunable
frequency filters or direction-of-arrival filters.

In figures 3(b) to (d), we show the magnetic near-field
patterns in the surface-plasmon resonances: P1 at
f= 2.59 THz, P3 at f= 5.25 THz and P5 at f= 6.94 THz,
marked in figure 3, on the elementary period of the grating for
the scattering of the normally incident H-polarized wave. As
mentioned above, in the case of the normal incidence, only
the odd-index surface-plasmon resonances are exited. The
even-index surface-plasmon resonances are not excited
because of the orthogonal symmetry of their modal fields
relative to the incident-field symmetry.

Figures 4(b) to (d) demonstrate the features of the sur-
face-plasmon resonances on a graphene-strip grating with
strips three times wider than those in figure 3. The near-zone
patterns of the absolute value of the magnetic field correspond
to the surface-plasmon resonances P1 at f= 1.22 THz, P3 at
f= 2.89 THz and P5 at f= 3.897 THz.

Figure 5 shows the spectra of the power fractions of
transmittance, reflectance and absorbance for a graphene-strip
grating under the oblique incidence (φ= 30°) of the H-
polarized (solid curves) and the E-polarized (dashed curves)
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plane wave. The number of resonances in comparison with
the case of normal incidence (figure 2) increases since both
the odd-index and the even-index surface-plasmon resonances
are now exited. This observation is supported by the the
magnetic field patterns in the resonances P1 at f= 2.54 THz,
P2 at f= 4.11 THz and P3 at f= 5.22 THz, shown in
figures 6(b) to (d). The direction of propagation of the inci-
dent plane wave is shown by the white arrow.

4. Conclusions

We have presented the dual-series equation technique sup-
plemented with the analytical regularization procedure in the
accurate numerical analysis of the scattering and absorption of
THz waves by a free-standing infinite grating of graphene
strips. Both the E- and H-polarization cases have been con-
sidered. The resulting meshless numerical solution does not
involve any numerical integrations, has accuracy controlled
by the size of the matrix equation and possesses guaranteed
convergence that can be brought to machine precision.

Using this accurate computational instrument, we have
quantified the surface-plasmon resonances observed in the H-
polarization and have revealed less-pronounced variations of
transmittance, reflectance and absorbance in the E-polarization at
the Rayleigh anomalies. These results can be potentially useful in
the computer-aided design and optimization of the filtering
components on the basis of periodically patterned graphene.
They can also be used in the verification of less accurate however
more versatile numerical codes and commercial software.

Extension of the analysis to the substrate-supported
graphene-strip gratings and to multi-layered gratings is
straightforward and will be a subject of separate publications.
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