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Abstract—Considered is the 2-D scattering of a plane wave by a
thin flat material strip. The data obtained by using the empirical
method of generalized boundary conditions and singular integral
equations on the strip median line are compared with the results
of solving the Muller boundary integral equation that takes full
account of strip thickness. Discretization of integral equations in
both cases is performed using the Nystrom methods that lead to
convergent algorithms. Numerical results cover and polar-
izations and two types of thin strips: conventional dielectric and
metal in the optical range. The validity and limitations of approx-
imate model are established and discussed.

Index Terms—Generalized boundary conditions, integral equa-
tions, scattering, thin strip.

I. INTRODUCTION

E FFICIENT numerical method for the analysis of 2-D
wave scattering by a thin material strip (see Fig. 1), based

on generalized boundary conditions (GBC) and corresponding
singular integral equations (SIE) on the strip median line, was
suggested in [1]. In fact, these SIE are a 2-D version of similar
equations derived earlier in [2], [3]. The “added value” of [1]
is solution of SIE with a meshless Nystrom-type discretization
that provides both guaranteed convergence and very small size
of a matrix to be inverted. This has allowed, apparently for
the first time, making fast and accurate computations of the
scattering by finite gratings of hundreds of strips [4], i.e., by
scatterers having total size in hundreds of wavelengths. How-
ever, since the considered SIEs are obtained using the GBC
derived for an infinite thin material slab, their applicability in
certain cases (e.g., shorter and thicker finite strips, resonances,
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Fig. 1. Cross-section of a free-standing thin material strip of relative dielectric
permittivity , width and the thickness , with rounded edges (see text for
details), illuminated by a plane wave incident under the angle .

and grazing incidence) can be questioned and has to be a
subject of research.
This is the goal of our paper. Validity and limitations of the

GBC-SIE approach can be established by confronting its numer-
ical results with the reference ones. As the reference numerical
solution, one has to use sufficiently accurate data obtained with
another numerical method, which 1) takes full account of strip
thickness and 2) possesses, similarly to GBC-SIE, guaranteed
convergence, i.e., allows one to control accuracy, to machine
precision, by varying the matrix order.
In the scattering of waves by 2-D homogeneous dielectric

bodies, boundary IE techniques are one of the most popular
computational tools. Still amazingly many researchers use the
forms of such IE that are not fully equivalent to the original
boundary-value problem, being corrupted by the presence of
infinite set of spurious real-valued eigenvalues [5], [6]. As dis-
cussed in [7]–[9], this pitfall can be avoided by using the Muller
boundary IE (MBIE) that is a pair of coupled second-kind IE for
the field tangential components [10]. Unlike the combined-field
IE, MBIE has no spurious eigenvalues (the former only pushes
them off from the real axis). Additionally, smooth or integrable
kernels make it a Fredholm second-kind IE, and therefore Fred-
holm theorems guarantee convergence of both local mesh-based
and global Galerkin discretizations.
Still other numerical treatment of MBIE that guarantees con-

vergence is the Nystrom-type meshless discretization using in-
terpolation polynomials and quadrature formulas. Here, several
schemes have been devised recently, most notably for contours
allowing smooth -periodic parameterization [8], [9]. In par-
ticular, the economic and robust algorithm of [8] exploits split-
ting all kernels of MBIE into logarithmic and smooth parts and
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uses two different quadrature formulas for integrating them ex-
plicitly. However this treatment must be modified if the contour
is only piece-wise smooth.
In the remainder of this paper, we briefly present the MBIE

and its numerical solution in Section II and the GBC-SIE and
the Nystrom algorithm in Section III. Section IV contains
comparative data on the scattering of and -polarized plane
waves by two types of thinner-than-wavelength strips: non-dis-
persive dielectric strips and dispersive metal ones in the optical
range. Conclusions are summarized in Section V. Throughout
the paper, time dependence is assumed and
omitted.

II. MULLER BOUNDARY INTEGRAL EQUATION METHOD

A. Formulation and Muller Equations

Consider an electromagnetic plane wave incident normally at
the angle on a flat material nonmagnetic strip (infinite along
the -axis) as depicted in Fig. 1. The strip

has complex relative permittivity or di-
electric function , width , thickness , and cross-section
contour . The host medium is free space.
Assume that the incident plane-wave -component of the
( ) field in the case of the ( ) polarization is given as

, where , ,
and is the free-space light velocity. In the presence of strip,
the total field is a sum of this function and the scat-
tered field, . The latter function must satisfy relevant
Helmholtz equation inside (in ) and outside the strip (in )
and the continuity of tangential components across . For the
uniqueness of the solution, must satisfy Sommerfeld
radiation condition and condition of local energy finiteness.
Derivation of MBIE is based on the use of the Green’s for-

mulas. In the 2-D case, all details of such derivation can be
found in [7], [8], so that we present only the resulting equations:

(1)

(2)

Here, is the limit value of the normal
derivative of the total field on the closed contour of the scat-
terer from the inner side of it, the normal unit vector is directed
to the outer domain (free space), is the elementary arc
length, and the constant is in the -polarization case and

in the -polarization case.
The kernels of MBIE have the following form:

(3)

(4)

where are the
Green’s functions of the corresponding homogeneous media,

, , and .

B. Discretization and Numerical Algorithm

If is a Lyapunov curve, then the kernel functions
have at most weak logarithmic singularities (see [7], [8]),
and (1), (2) are Fredholm second kind IEs. This guarantees
convergence of usual numerical schemes of its discretization.
However, the assumption of to be a Lyapunov curve is
essential here, since (1), (2) are derived by using theorems
of classical potential theory [11], and in non-regular points
of contour the unit normal vector and some field components
and their derivatives are not defined. In order to overcome this
problem, one can approximate irregular curve by a smooth one
and then apply quadratures for the -periodic functions [8].
For example, rectangular shape can be smoothed using the
trigonometric polynomial approximation (truncated Fourier
series) [12] or superellipse formula [7]. However Fourier series
are known to diverge for the contours with edges and even with
finite jumps of curvature. The superellipse curve is not well
suited to our problem, because parameterization with the polar
angle requires very dense mesh near to the ends of a thin strip
with high ratio of .
Therefore, as shown in Fig. 1, we subdivide the strip contour
into separate smooth segments that is four straight intervals,

extract logarithmic singularities from (3) and (4), and apply
quadratures on each segment. The discretization performed in
this manner is not sensitive to the irregularities of the contour so
far as the interpolation nodes do not coincide with edge points.
Full analysis of the kernels at can be found in [7], [8].
Denoting the contour curvature , we introduce new contin-
uous kernels as follows:

(5)

(6)

(7)

(8)

Introduce subsections of the lengths ( )
of the segments of and assume that unknown functions are
constants at each subsection. Then, after applying the rectangle
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rule for numerical integration, we obtain a matrix equation with
respect to the unknowns

(9)

(10)

As , the value of can be obtained
analytically.
In computations, we have taken in the case of a

half-wavelength dielectric strip with , and 200 to 1000 in
the case of silver strip of to 900 nm. This guaranteed
the accuracy, in the far field, of the order of and ,
respectively (see Appendix II). Larger for a metal strip are
explained by the larger values of .

III. GENERALIZED BOUNDARY CONDITIONS—SINGULAR
INTEGRAL EQUATION METHOD

A. Dielectric Strip, -Polarization

GBC-SIE is an empirical method, in the sense that it does not
follow directly from MBIE in fully justified manner; instead it
uses assumptions valid for thin infinite layers.
In brief, these assumptions are as follows: if (
), one can shrink the strip cross-section to its median line,

, exclude the field inside the
strip from consideration, and impose, at , two-side GBC first
derived in [13] for an infinite thin material slab (see Appendix I).
We will use the following form of GBC adopted in [3] as more
transparent:

(11)

Here, is the unit normal vector, is the free-space
impedance, the indices correspond to the field limit values at
the top and bottom sides of the strip, respectively. These GBC
have been derived for an infinite thin slab illuminated by a plane
wave [13]–[16]. The coefficients and are called the electric
and magnetic resistivities, which have several forms depending

on the slab . If the contrast is high, , then [13], [14],
[16], [3]

(12)
where is the refractive index. If, alternatively,
the contrast is low, , then [15]

(13)

The GBC (11) is approximate, however it is clearly a big step
ahead from the PEC condition, to which it turns if and

(see Appendix I). In [17], a modified version of (12)
has been proposed that keeps validity for by taking into
account the compensation for the reduction of the slab area to
the line of zero thickness. According to [17],

(14)

where , and and are taken from (12).
Note that GBC (11) has the meaning of Ohm’s law for the ef-

fective electric and magnetic currents, which correspond to the
difference terms in their right-hand parts. Other form of effec-
tive BC involving field derivatives has been discussed in [15],
[18]. We will not present here any results computed with such
modifiedGBC. This is because they coincide with the data based
on (11)–(12) within 1% for all strips considered in our paper. If
the strip median is not straight then GBC takes more compli-
cated form involving cross-resistivities [3], [18].
When GBC (11) is imposed at a finite strip, the uniqueness

of solution is again provided by the condition of local finiteness
of power and the radiation condition. Note that the field sin-
gularities at the resistive strip endpoints are different from the
right-angle dielectric wedge as revealed in [19].
Although GBC (11) does not depend on the width , it is nat-

ural to expect that for very narrow strips, say , its use
is too far from infinite-slab situation. Still note that GBC (11)
and (12) have already been used in the analysis of infinite flat
gratings of dielectric and metal strips [20], [21]. Their partial
validation was done in [20] using the volume IE in the -polar-
ization case for .

B. Singular Integral Equations and Numerical Algorithm

We seek the scattered field as a sum of single-layer and
double-layer potentials

(15)
where is either
or depending on the polarization, and is
the free-space Green’s function. From the properties of the
limit values of potentials it follows that unknown functions are

and .
Using (15) in GBC (11) yields two independent IEs of the

second kind. In the -polarization case, after the introduction
of the strip parameterization as ,
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for and new smooth unknown function
, we obtain

(16)

(17)

In the -polarization case, the quantities and ex-
change places. Here, is the normalized fre-
quency and the terms and

are defined by the inci-
dent wave. Note that SIE (16) has logarithmic singularity and
(17) is a hyper-singular SIE whose integral operator should be
understood in the sense of Hadamard’s finite part.
Further we extract the singularities and discretize each SIE

using a Nystrom-type method approximating the unknowns by
polynomials and using quadrature rules of interpolation type [1],
[4]. For (16), we use the Gauss-Legendre quadrature formulas
of the th order with nodes in the nulls of Legendre polyno-
mials. For (17), we use weighted Gauss-Chebyshev quadrature
formulas of the th order with nodes in the nulls of Cheby-
shev polynomials of the second kind. This yields two indepen-
dent matrix equations for the surface currents. The theorems on
quadratures ensure quick convergence of their solutions to the
accurate ones if (at least as ), see Appendix II.
All data presented below have been computed with accu-
racy ( ). Note that unlike PEC-strip SIE [22], (16), (17)
cannot provide exponential convergence.

IV. NUMERICAL RESULTS

To study validity and limitations of the GBC-SIE approach,
we have compared its results with those of MBIE. We have con-
sidered the and -polarized plane wave incident on non-dis-
persive dielectric strips and dispersive metal strips, with varying
strip width, thickness, permittivity, and incidence angle. The
total scattering cross-section and the radar cross-section (TSCS
and RCS) have been computed.

A. Dielectric Strip, -Polarization

First of all, we compare the above mentioned methods and
models with Galerkin’s method of Richmond applied to the
volume IE [23] for the edge-on -wave scattering by a thin
( ) dielectric lossy strip with . In Fig. 2,
we demonstrate the corresponding plots of the normalized RCS
versus the incidence angle; the inset explains the origin of
results. Note that both MBIE and GBC-SIE algorithms were
adapted to keep four-digit accuracy.
As one can see, for such a small thickness and moderate , it

is sufficient to apply GBC with either the low-contrast and
(13) or the compensated high-contrast ones (14). This model
is accurate at any angle of incidence while the non-compen-
sated high-contrast model (12) fails at the grazing. In general,
the edge-on incidence ( ) is the least favorable for using
the GBC. However, even in this case both low-contrast (13) and

Fig. 2. Normalized RCS as a function of the incidence angle of the -wave for
the scattering by strip with , and .

Fig. 3. Normalized RCS versus the normalized frequency for the edge-on
scattering of -wave ( ) by a dielectric strip of with .

compensated high-contrast (14) models yield accurate depen-
dences of RCS in the wide range of frequencies (Fig. 3). Deep
periodic minima in RCS are explained by the antiphase inter-
ference of reflections from the leading and trailing edges of the

-wide strip, where
Further we have computed the scattering by strips made of

the dielectrics with relatively large values of . In Fig. 4, we
compare spectra of TSCS for a lossless strip with and
thickness under the broadside illumination (

). As visible, the compensated model of (14) is the best,
although low-contrast model of (13) can be also used with a
2% or better accuracy if , i.e., where .
All models reproduce almost periodic Fabry–Perot resonances
on the principal -polarized surface wave of the corresponding
slab. Still the largest errors are near these resonances because of
the shifts of resonance frequencies.
The relative errors versus varying frequency are shown in

Fig. 5 where MBIE results are taken as a reference, so that

(18)

One can see that the error in Karlsson’s model does not ex-
ceed 2% in contrast to 12% for the model of (12).
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Fig. 4. Normalized RCS versus normalized frequency for a dielectric strip of
and thickness under the normal ( ) incidence of

the -polarized plane wave.

Fig. 5. Relative errors as a function of the normalized frequency for the same
configuration as in Fig. 4.

Fig. 6. Normalized TSCS versus for a lossy dielectric strip with of
for under the normally incident ( ) -polarized wave.

The plots of TSCS versus thickness for the same strip are
given in Fig. 6 and show that the GBC-SIE fails if
(as ).

B. Dielectric Strip, -Polarization

In Fig. 7, we present TSCS versus the normalized frequency
for a strip with and thickness , under the
normally incident -wave. As one can see, in the -case the
compensated high-contrast model of (14) agrees very well with
the MBIE reference data.

Fig. 7. The same as in Fig. 4 however for the -polarization case.

Fig. 8. The same as in Fig. 5 however for the -polarization case.

Fig. 9. The same as in Fig. 6 however for the -polarization case.

The corresponding relative errors are shown in Fig. 8: the
models of (14) and (12) provide 2% and 10% or better accuracy,
respectively.
The plots of TSCS versus the thickness for the same strip in

the -wave case are given in Fig. 9. They demonstrate accuracy
of the model (14) within 10% if only

C. Metal Strip, -Polarization

In the visible range, good metals are “negative dielectrics”:
for silver, has negative values between and
[24]. The plots of TSCS versus the wavelength are shown in
Fig. 10 for four different-width silver nanostrips.
As visible, in the -wave case the scattering of light by thin

metal strips can be successfully modeled using the GBC-SIE
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Fig. 10. Normalized TSCS spectra for the silver strips of mm (a) and
mm (b) and varying width, under the normally incident -polarized

wave.

Fig. 11. Normalized TSCS versus the wavelength for the silver strip of
mm and mm under the normally incident -polarized wave.

approach with compensated resistivities (14). For this model,
the relative errors in TSCS for two values of thickness, 5 nm
and 20 nm, are about 1% in the whole visible range. Note also
that, in this range, the skin-depth of silver is around 20 nm.

D. Metal Strip, -Polarization and Width Correction

Unlike the -case, the -wave scattering by a thin silver
nanostrip shows intensive plasmon resonances [4]. Thus the ac-
curacy of an approximate model strongly depends on its ability
to place the resonances at correct —see Figs. 11–13.

Fig. 12. The same as in Fig. 10 however for the normally incident -wave
calculated using GBC of (12) (solid curves) and MBIE method (rectangles).

For a 5-nm thin strip [Figs. 11 and 12(a)], all three approxi-
mate models reproduce plasmon resonances of TSCS however
the shift from correct is 2% for (12), 4% for (14) and 6% for
(13). For a 20-nm thin strip, similar pattern is seen in Fig. 12(b).
Thus, the high-contrast model of (12) is relatively the best for
the simulation of silver nanostrip scattering. The associated er-
rors of this model with respect to MBIE are shown in Fig. 13 by
the lines marked with dots.
They display less than 10% values except of the vicinities of

resonances where they can reach 35% depending on the thick-
ness. Searching for a remedy, we have found a simple empirical
rule allowing us to improve the relative error of the median-line
GBC-SIE with resistivities of (12) in 3 to 6 times, in the visible
range. Namely, such a nearly best fit is achieved by increasing
the width of the strip, in computations, by the value of strip
thickness, i.e., to . Numerical experiments have
shown that this empirical correction works well if the strip width
is at least between 150 nm and 450 nm. It results in reducing the
relative error of model (12) below 7% (4% off resonances) for

mm and below 11% for mm, in the whole vis-
ible range as demonstrated in Fig. 13 by the curves marked with
triangles.
As one can see, wider nanostrips made of silver are generally

better simulated with high-contrast model of (12) than narrower
ones, although the difference is not significant.
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Fig. 13. Relative error of the TSCS calculation via resistive-strip model from
Muller BIE as a function of the wavelength for the different values of the strip
width of mm (a) and 20 nm (b) for different values of under the nor-
mally ( ) incident -polarized plane wave.

Fig. 14. Normalized TSCS versus the strip thickness for the silver strip of
width mm for fixed wavelengths mm (rectangles) and

mm (circles) under the normal incident -polarized plane wave.

The effect of the metal strip thickness on the accuracy of
GBC-SIE can be understood from the results shown in Fig. 14.
Generally good coincidence (with error of 2% to 10%), is ob-
served in almost whole range of silver strips thicknesses con-
sidered, i.e., up to 100 nm, except of resonance thickness. For
example, in Fig. 14 the largest discrepancy is seen at mm
for mm, which is the resonance wavelength for the
strip of this size [compare with Fig. 12(a)].
As GBC (11) has been derived for an infinite plane layer (see

Appendix I) where is not possible, its applicability to

Fig. 15. Normalized TSCS and RCS versus the wavelength for a silver strip of
mm and mm under the edge-on ( ) incidence of -wave.

the case of finite strip scattering can be questioned under the
edge-on incidence of a plane wave.
However, as demonstrated by the plots of TSCS and BSCS in

Fig. 15, the approximate model of (12) is very accurate even in
this case apparently because the surface-plasmon resonances are
not excited (they are “dark,” i.e., have the symmetry orthogonal
to the incident wave). Note that a silver strip under the edge-on
incidence is “visible”: it both scatters and absorbs the -polar-
ized light in contrast to the PEC strip, which is invisible. A deep
minimum in RCS at 600 nm is explained by the anti-phase in-
terference of reflections from the leading and trailing edges of
the strip.

V. CONCLUSION

We have compared two approaches to the 2-D scattering by
thin material strips: approximate model based on the GBC and
SIE with a Nystrom-type discretization and accurate model
based on the Muller boundary IE discretized with another
Nystrom method.
As any empirical technique, GBC-SIE approach has certain

limitations. As we have shown, they are mainly associated with
the strip thickness and its width: thinner and wider strips show
better agreement with reference data obtained fromMBIE. Two
cases considered, non-dispersive dielectric strip and dispersive
metal strip in the visible range demonstrate somewhat different
behavior of the errors of approximate technique. Besides,
each kind of strips behaves differently for two alternative
polarizations.
In the case of conventional-dielectric strip, the -polarized

wave excites resonances (standing waves) associated with the
principal surface wave of a corresponding dielectric slab. In the
-case, such resonances are absent. Nevertheless in either po-
larization, the compensated high-contrast model of (14) is able
to provide accuracy of 2% both in and off resonances.
In the case of metal strip in the visible range, it is the -po-

larized wave that excites surface-plasmon resonances absent for
the -polarized light. Here the non-compensated high-contrast
model of (12) shows the best performance (error within 10%)
off the resonance. Near the plasmon resonances the same accu-
racy can be achieved only after changing the metal strip width
to the empirical effective value .
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Fig. 16. Reliefs of the relative error in the reflection coefficient of the -polar-
ized plane wave computed by Karlsson model (a) and Mitzner model (b), for an
infinite silver slab ( ), versus the wavelength and the slab thickness .

Fig. 17. The same as in Fig. 16 versus the angle of incidence for a fixed silver
slab thickness and wavelength .

The main advantage of the approximate GBC-SIE technique
in comparison to MBIE method is low CPU time cost. The time
required for obtaining the TSCS with relative internal accuracy
of for a thin dielectric strip or a noble-metal strip in optical
range is around times larger with MBIE than with GBC-SIE
using the optimally selected resistivities.
This advantage makes GBC and associated median-line SIE

an effective computational tool to study the scattering and ab-
sorption by multiple dielectric and noble-metal strips. In certain
cases collecting many dozens and hundreds of tiny scatterers
brings new physics. If arranged periodically, they show new res-
onances caused by the periodicity [4], [25]. These huge collec-
tions of scatterers are absolutely out of reach if one uses either
in-house MBIE algorithms or commercial software.

APPENDIX I
GBC FOR INFINITE SLAB

The plane-wave scattering by an infinite homogeneous
material slab is a classical topic and its analytical solu-
tion can be found in many textbooks. The scattering by a
zero-thickness sheet characterized with GBC (11) is also solved
analytically [3]. Therefore, in Figs. 16 and 17 we show only
the error of the GBC in the absolute value of the reflection
coefficient of a silver slab in visible range in the -case.
As one can see, the compensated GBC of Karlsson keeps

being very accurate in wider range of thickness values and an-
gles of incidence than non-compensated GBC of Mitzner, al-
though all approximate models fail at the grazing incidence. In
the -polarization scattering by a silver slab, the range of GBC
validity is even larger. The same is valid for a conventional-di-
electric slab in both polarizations.

TABLE I
COMPUTATIONAL ERROR AND TIME VERSUS DISCRETIZATION ORDER

APPENDIX II
CONVERGENCE RATE AND CPU TIME

To see advantages of the approximate GBC-SIE technique in
the context of its convergence and CPU time cost, we have com-
pared computational errors in calculating the TSCS for a silver
strip with mm and mm at the fixed wavelength

mm in the case of the -polarization versus the order
of discretization (which is the number of the contour parti-
tions for MBIE and the order of interpolation polynomial for
GBC-SIE). These data are collected in Table I.
They demonstrate that a relative internal accuracy in

TSCS for a fixed wavelength and fixed silver-strip geometry is
provided in times faster with GBC-SIE technique than with
MBIE one. In both cases we used similar personal computer
Intel (R) Core (TM) 2 Quand CPU Q8200 @2.33 GHz with
RAM—3.25 GB (Windows7 64-bit).
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