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Plane Wave Scattering and Absorption by Flat
Gratings of Impedance Strips

Tatiana L. Zinenko, Member, IEEE, and Alexander I. Nosich, Fellow, IEEE

Abstract—The problem of the plane wave scattering by a flat
impedance-strip grating located in free space is considered. The
formulation involves a set of generalized boundary conditions re-
lating limiting values of the fields to effective electric and mag-
netic currents. We develop an accurate numerical solution to this
problem using the dual series equations and the method of analyt-
ical regularization (MAR) based on the main part inversion. This
guarantees a fast convergence and controlled accuracy of compu-
tations. Reflected, transmitted, and absorbed power fractions as a
function of the frequency and the grating parameters are analyzed.
Sharp resonances are revealed in the H-polarized scattering near
to the grazing of the higher-order modes; these resonances are ab-
sent for the perfect electrically conducting strip grating. Low-fre-
quency asymptotics for the reflectance and transmittance in the
single-mode regime are presented and compared with numerical
solutions.

Index Terms—Absorption, grating, impedance strip, scattering.

I. INTRODUCTION

METALLIC gratings in the form of flat periodic arrays of
thin strips are used today across a wide range of elec-

tromagnetic field frequencies and applications. This is due to
their high polarization selectivity, first discovered by Hertz in
1889 for a wire grid [1], if the period is smaller than the wave-
length. Such gratings can be identified as key elements of po-
larization dividers, polarization attenuators, polarization con-
verters, diffractometers and interferometers operating in mil-
limeter (mm) and sub-millimeter (sub-mm) wave regions. Be-
sides, at the lower frequencies printed resistive strip gratings
offer an attractive design of flat microwave absorbers. In op-
tics, silver and gold strip gratings are used in the substrates
for the surface-enhanced Raman spectroscopy, and in the ver-
tical-cavity semiconductor lasers for the mode selection.

Therefore, it is not a surprise that such gratings have been
attracting attention from theoreticians since the time of the pi-
oneering paper of Lamb [2] who had demystified the Hertz ef-
fect. Several techniques have been reported for building the nu-
merical solutions to the scattering by the gratings of the per-
fect electric conducting (PEC) strips and later of the penetrable
imperfect strips, resistive and dielectric: the spectral Galerkin
moment method [3], the inverse Fourier transform method [4],
the singular integral equation method with projection to orthog-
onal polynomials [5], and the method of the Riemann–Hilbert
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boundary value problem (RHP) [6], [71]. The latter two methods
belong to the family of the analytical regularization techniques
[8] whose many advantages follow from the Fredholm second
kind nature of the resultant infinite-matrix equations. The main
of them is the guaranteed and fast convergence and hence the
controlled accuracy when truncating the matrix and the right-
hand part at progressively larger orders. The goal of the present
paper is to modify the approach originally developed in [7] for
the penetrable strip gratings to the plane wave scattering by
a flat grating of thin impenetrable two-face impedance strips.
Analysis of the features of such a grating can help establish the
boundaries of good validity of common approximation of thin
metal strips as PEC. Besides, it opens a way to study the grat-
ings of strips covered with thin material layers, e.g., painted,
oxidized, etc.

The remainder of this paper is organized as follows. In
Section II we formulate the boundary value problem, reduce
it to the dual series equations, and perform their analytical
regularization. Section III contains a numerical study of how a
departure from the perfect conductivity affects the strip grating
performance, especially in terms of the power absorption.
In Section IV, we obtain analytical formulas for reflectance
and transmittance in the low-frequency region and test their
accuracy with respect to the results of our computations. Con-
clusions are formulated in Section V. The time dependence is
assumed as and omitted.

II. FORMULATION AND BASIC EQUATIONS

Consider the two-dimensional (2-D) scattering of a plane
wave by a grating made of zero-thickness impenetrable strips
with two different face impedances . The geometry of the
problem is illustrated in Fig. 1(a). Infinite number of strips,
parallel to the -axis, are located in the plane with period

. Each strip has the width . The propagation vector of the
incident plane wave makes the angle with respect to the
negative axis.

We shall assume that, at the strips, generalized two-side
boundary conditions (GBC) involving jumps and mean values
of the tangential field components are imposed. These GBC
are derived on consideration of the fields near a thin infinite
material slab and can be cast into the following form [9]:

(1)

1Regarding [7], note that in Fig. 6, the near-grazing resonances are missing
because of too coarse resolution.
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Fig. 1. Geometry of the impedance strip grating scattering problem.

where electric and magnetic surface currents are, respectively

(2)

Here, the superscript indicates the limiting value of the
function at , the subscript denotes vectors tangen-
tial to the strips, and is the unit vector normal to the strips.
The GBC allow to neglect the fields inside the slab and charac-
terize its properties by means of so-called electrical resistivity

, magnetic resistivity , and cross-resistivity . Additionally,
for an impenetrable impedance layer, if only , the
resistivities are coupled together and relate to the surface im-
pedances as [9]

(3)

For the uniqueness of solution, we complete the formula-
tion, similarly to [7], with the edge condition and the radiation
condition at . The former condition has the form of
demand that the field power contained in a finite domain, in-
cluding the strip edges, is bounded. The latter requests that the
field is expandable in the convergent series of the outgoing (fi-
nite number) and exponentially decaying (infinite number) Flo-
quet–Rayleigh–Bloch spatial harmonics.

Note that cross-resistivity vanishes for a layer with
two identical face impedances, and then the effective electric
and magnetic currents decouple. This takes place when the
impedance slab is a model of the homogeneous well conducting
metal slab having the thickness greater than the skin depth,

[Fig. 1(b)]. Then the surface impedances of both faces
are the same and given by (see, e.g.,
[10]), where is the permeability and is the electron
conductance. Note that the exact value of the thickness does
not matter here, as far as .

Another interesting for applications case is a PEC slab
covered with magnetodielectric coatings, in general different
from each other [Fig. 1(c)]. Surface impedance model of a thin
grounded material slab is well-known—see, e.g., [10]. It leads
to the expression, , where

is the free space wavenumber, is the relative permittivity,
is the relative permeability, is the thickness of the coating,

and is the free space impedance. This formula is valid for thin
and high-contrast magnetodielectric

coatings.
Two alternative cases of the E-polarized (only , , and

components are nonzero), and H-polarized wave scattering
(only , , and are nonzero) can be considered along sim-
ilar lines. Denote by the -components of the field, i.e.
either or depending on polarization. Then the incident
wave is

(4)

Due to periodicity of the boundary conditions, the -compo-
nents of the scattered fields are quasi-periodic functions of and
can be expanded in the Floquet series

(5)

where , , ,
, and the radiation condition requires that

either or for each .
To determine the unknown Floquet-mode amplitudes of the

scattered field in the transmission and reflection half-space, i.e.,
and , respectively, we use two dual sets of conditions that

hold on the complementary subintervals of the elementary pe-
riod. They are GBC on the strip part, , and conditions of con-
tinuity of the total field tangential components on the slot part,

(6)

(7)

These conditions, together with the Floquet field expansions,
lead to two coupled pairs of the dual series equations (DSE).
The E-wave case is shown in (8) and (9), and the H-wave case is
shown in (10) and (11), all located at the bottom of the following
page.

Here, , ,
, and . Besides,

, , while
, .

The reflected , transmitted , and absorbed
by the grating fractions of power of the incident wave at a single
period are coupled by the power balance equation

(12)
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Here the following expressions hold:

(13)
with standing for the Kronecker delta, and summation is
taken over the modes that carry power to infinity.

Further, we assume for a moment that , , and are con-
stants and make analytical inversion of the static parts of (8),
(9), and (10), (11). This operation is equivalent to the inversion
of the main parts of DSEs in terms of the dependences on the
summation index . Analytical inversion needs application of
the RHP technique and the inverse Fourier transform (IFT) de-
pending on the equation features (see Appendix). This proce-
dure leads, in each case, to the 2 2 block-type infinite-matrix
equations, equivalent to the original boundary-value problem

(14)

where the matrix and right-hand part elements are given by

(15)

(16)

The expressions for and can be found
in Appendix. Based on the large-index asymptotics of
the Legendre polynomials, one can verify that, uniformly
for all , and

. Then one can see that

(17)

Therefore, (14) is a Fredholm second kind matrix equation in the
space of sequences , and its truncation yields stable and
convergent numerical solution. As (15) and (16) can be easily
computed with machine precision, the overall accuracy of solu-
tion is controlled by the truncation number.

III. NUMERICAL RESULTS

First we study the effect of the imperfect conductivity on
the metal strip grating performance. Here, to justify the use
of GBC (1), we consider steel, iron, and silver strips having
thickness greater than the corresponding skin depth (this is

, , , respectively, for
) however still much smaller than the wavelength

(note that actual value of does not matter here). As high elec-
tron conductance values for these metals result in the reflectance
and transmittance very close to those for the PEC-strip grating,
we focus on the absorption.

(8)

(9)

(10)

(11)
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Fig. 2. Absorbed power fractions as functions of normalized frequency for the
scattering of the (a) E-wave and the (b) H-wave from metal strip gratings. ' =
0 , 2w=d = 0:5, d = 0:5 mm, � = 1:1 � 10 S=m (steel), � = 1:03 �
10 S=m (iron), � = 6:173� 10 S=m (silver) [8].

Fig. 2 demonstrates the frequency dependences of the ab-
sorbed power fractions for the mentioned strip gratings having
periods and strip width . One
can see that in the wavelength band of (i.e.,

) the absorption by a grating of thin steel strips is the
greatest among the three gratings and exceeds 0.01 at
and in the E-wave and the H-wave cases, respectively.
Thus, the Ohmic losses in the scattering by a grating of steel
strips become noticeable in the mm and sub-mm wave regions,
respectively, i.e., in the situations where metallic strip gratings
are most widely used. The absorption by a grating of thin iron
strips is several times smaller however climbs up to 0.01 in the
vicinity of the grazing of the 1st and the 3rd spatial harmonics
in the E-wave case. Unlike this, the silver strip grating absorp-
tion amounts to 0.01 only in the vicinity of the grazing of the
1st harmonic in the H-wave case. The inset in Fig. 2(b) shows
increase in absorption in the narrow band below the frequency

, i.e., where the first Floquet harmonics are just before
grazing. Such a resonant behavior is explained by the excitation
of the natural oscillations of the grating suppressed by the rel-
atively large losses (here the surface impedance has equal real
and imaginary parts).

Fig. 3 demonstrates the frequency dependences of the power
fractions for the scattering of the H-wave from the grating of
PEC strips having one or both faces covered (e.g., painted) with
thin material coatings with large electric losses. These strips are

Fig. 3. (a) Reflected, (b) transmitted, and (c) absorbed power fractions as func-
tions of � for the scattering of the H-wave from a coated grating with electric
losses. ' = 0 , h=d = 0:01, 2w=d = 0:5, � = � = 1, (curves 1)
" = " = 1� 30j, (curves 2) " = 1� 30j, Z = 0, (curves 3) Z = 0,
" = 1 � 30j, (curves 4) are the same as for PEC grating. (d) is the same as
(a)–(c) for the case (curves 1) in the vicinity of resonance.

characterized by two equal (curves 1) or different surface im-
pedances (curves 2 and 3), respectively. Almost total transmis-
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sion is observed in the low-frequency limit. Thus, the Hertz ef-
fect takes place: small period impedance strip grating
is almost transparent for the H-polarized wave. At the same
time, Fig. 3 shows a sharp drop in reflection and increase in
absorption in the narrow band below the frequency (i.e.,

for normal incidence), i.e., where the first Floquet har-
monic is just before grazing. This resonant behavior is sim-
ilar to that visible in Fig. 2(b). However, now the resonances
are sharper because the real part of the surface impedance is

times smaller than the imaginary part.
For , the values of reflectance and transmittance are
quite comparable to each other. An interesting however not un-
expected observation is that the reflection by a dark-face coated
grating (curves 3) exceeds the reflection by two other structures
if . This is because the absorption by the only
dark-face coated grating is small.

Fig. 4 shows frequency characteristics of the power fractions
for the H-wave scattering by the impedance grating with a mag-
netic-lossy coating. Curves 1 correspond to two identical sur-
face impedances, and curves 2 and 3 correspond to different sur-
face impedances. One can see again that in the low frequency
limit a magnetic-lossy material coated grating is completely
transparent for the H polarization. Reflection by a dark-face
magnetic lossy material coated grating exceeds reflection by
two other gratings in the whole considered frequency range.
This is because absorption by the dark-face coated grating is
much smaller than absorption by the two-face coated and illu-
minated-face coated gratings. However, in general the absorp-
tion by a lossy-magnetic material coated grating is always much
greater than absorption by a lossy-electric material coated one.
It runs up to 0.8 whereas for the electric-lossy coated grating
the absorption fraction does not exceed 0.1. This is because in
the case of the H-polarization the magnetic field is not small
near a PEC strip whereas the electric field tangential compo-
nent is zero. Here, absorption resonances in the vicinity of the
grazing are completely suppressed (compare with Figs. 2 and 3)
because real and imaginary parts of the surface impedance re-
late as .

Fig. 5 demonstrates frequency dependences of the power frac-
tions for the E-wave scattering from the PEC gratings with one
or both faces covered with thin material coatings having elec-
tric losses. As for a similar PEC grating without a coating, al-
most total reflection is observed in the low-frequency limit (both
transmission and absorption approach zero). Thus, small-period
coated strip grating behaves like a PEC grating [4]
in the E-polarization case. If , the values of reflection
and transmission power fractions are comparable to each other.
The absorption power fractions do not exceed 0.1 similarly to the
H-wavescattering from the same gratings (Fig. 3). Note that there
are no sharp resonances near the grazing.

Finally, Fig. 6 shows frequency dependences similar to those
presented in Fig. 5 but for the strip gratings with magnetic-lossy
coatings. Comparison of the curves discloses the same effect
as in the H-case (see Fig. 4), i.e., absorption by lossy-mag-
netic material coated gratings is much greater than absorption
by lossy-electric material coated ones. In the first case the ab-
sorption amounts to 0.76 while in the second case it does not
exceed 0.1.

Fig. 4. (a) Reflected, (b) transmitted, and (c) absorbed power fractions as func-
tions of � for the scattering of the H-wave from impedance grating with mag-
netic losses. ' = 0 , h=d = 0:01, 2w=d = 0:5, " = " = 1, (curves 1)
� = � = 1� 30j, (curves 2) � = 1� 30j, Z = 0, (curves 3) Z = 0,
� = 1� 30j. Dotted lines are the same as for PEC grating.

IV. MODIFIED LAMB FORMULAS

Besides the numerical solution with guaranteed accuracy,
regularized matrix (14) can be solved by iterations, pro-
vided that the norm of the corresponding matrix operator
is less than unity, . As we have inverted the static
parts of the full-wave DSE, assuming that , , and are
fixed, it is not surprising to see that, in the each polarization
case, . This means that in the low-frequency
range the Lamb-type formulas can be obtained after ex-
panding all the quantities in (15) or (16) in terms of the
power series of and retaining the first-order terms, i.e.,
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Fig. 5. (a) Transmitted, (b) reflected, and (c) absorbed power fractions as func-
tions of � for the scattering of the E-wave from impedance grating with electric
losses. ' = 0 , h=d = 0:01, 2w=d = 0:5, � = � = 1, (curves 1)
" = " = 1� 30j, (curves 2) " = 1� 30j, Z = 0, (curves 3) Z = 0,
" = 1� 30j, (curves 4) are the same as for PEC grating.

. By using this ap-
proach and matrix (14), Lamb-type formulas for a grating made
of impedance strips are found to be

(18)

Fig. 6. (a) Transmitted, (b) reflected, and (c) absorbed power fractions as func-
tions of � for the scattering of the E-wave from impedance grating with mag-
netic losses. ' = 0 , h=d = 0:01, 2w=d = 0:5, " = " = 1, (curves 1)
� = � = 1� 30j, (curves 2) � = 1� 30j, Z = 0; (curves 3) Z = 0,
� = 1� 30j. Dotted lines are the same as for a PEC grating.

(19)



2094 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 54, NO. 7, JULY 2006

Fig. 7. Comparison of the accurate and approximate solutions for reflection
coefficients. ' = 0 , h=d = 0:01. (1) " = 1 � 30j, � = 1, " = 1,
� = 1; (2) " = 1, � = 1, " = 1 � 30j, � = 1. (a) E-wave. (b)
H-wave.

where

(20)

(21)

Fig. 7 shows frequency dependences of the absolute values
of the 0th harmonic amplitude (i.e., field reflection coefficient
in the single-mode regime) for the grating whose illuminated
face is coated with a lossy dielectric layer (curves 1) and for the
similar grating whose dark face is coated with the same dielec-
tric layer (curves 2), for three different values of the strip width

. The dependences are obtained by means of accurate solu-
tions (14) and by the modified Lamb formulas (18)–(21) for the
E-wave and the H-wave cases. One can see that the long-wave
asymptotics are in good agreement with those obtained by the
accurate solution for both gratings considered. It has been found

that the error defined as does not ex-
ceed 10% for and arbitrary values of at the normal
incidence of both E and H-polarized waves.

The Lamb-type formulas greatly simplify engineering design
of polarization discriminators based on the small-period imper-
fect-strip gratings.

V. CONCLUSION

We have developed a powerful numerical solution to the scat-
tering problem concerning an impedance strip grating in free
space illuminated by a plane electromagnetic wave.

The computations have been carried out for the reflected,
transmitted, and absorbed power fractions as a function of the
electrical and material parameters of the several types of grat-
ings. They show that metallic strip gratings may have a large
power fraction lost through the absorption in the thin lossy coat-
ings, especially if the illuminated face of the strip grating is cov-
ered with a magnetic type coating. In such a case one can obtain
considerable absorption at any frequency.

Besides, the effect of the resonant absorption of the H-wave
just below the frequency values of the higher space harmonics
grazing has been found. It is caused by a resonant enhancement
of the near field and can be used for the narrow band polarization
and angle-of-incidence discrimination.

APPENDIX

Consider a DSE of the following form:

(A1)

where the expansion coefficients of the right-hand side are
supposed to be known and are decreasing as ,
for large . Following [6] and [11], an exact analytical solution
to this equation can be conveniently written as

(A2)

where

(A3)
are the Legendre polynomials, , and

(A4)
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For a series equation given as

(A5)

we apply the inverse Fourier transform; that is, multiply both
sides by and integrate from 0 to . The result is

(A6)

and

(A7)
Note that both (A2) and (A6) form the number sequences of the
class , because .
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