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Letters

Revisiting the Waves on a Coated Cylinder
by Using Surface-Impedance Model

Laurence Richard, Alexander I. Nosich, and Jean-Pierre Daniel

Abstract—The results of analytical and numerical study of the modes
propagating on an impedance-surface circular cylinder are communi-
cated. Besides the well-known axially symmetric Sommerfeld’s mode,
another hybrid mode, having a single azimuthal variation, can propagate
at any frequency. For a realistic cylindrical conformal antenna, the both
wavenumbers are quite comparable. This may cause additional coupling
between array antenna elements.

Index Terms—Dielectric-coated metallic cylinder, printed antennas,
surface impedance.

I. INTRODUCTION

The analysis of the electromagnetic wave propagation along an
imperfect infinite circular wire was first done by Sommerfeld in his
pioneering paper [1]. He discovered that a TM modeE01, having
no azimuthal field dependence, can propagate at any frequency.
Cylinders have been studied in view of waveguide and antenna
applications since the 1950’s [2]–[6]. A new interest to the dielectric-
coated cylinder has appeared recently in concern of the radiation of
conformal printed antenna arrays [7]. The efficiency of radiation,
input impedance, and the far-field radiation pattern are influenced
by the guided and leaky modes of the substrate. As the thickness
of the coating is normally small, it can be approximated by an
impedance-type boundary condition [5]. As we demonstrate, besides
the well-knownE01 mode, another one (HE11) is able to propagate
with a nearly equal wavenumber.

II. DISPERSION EQUATIONS

The modal analysis of the surface waves propagating along an
impedance wire (Fig. 1) as a traveling waveexp(i!t� ihz) is based
on the eigenvalue problem, in terms of the wavenumberh for the set
of homogeneous Maxwell equations with the boundary condition

~Etan = Z0Zs[n̂out � ~Htan]; r = a (1)

and a request to the field to decay in the cross-sectional plane.
Here,Zs is the normalized surface impedance. Due to the circular
symmetry, the modes havingm = 0; 1; 2; � � � azimuthal variations
can be considered separately that results in the following dispersion
equations:

(ka�)2[�Km(ka�)� iZsK
0

m(ka�)][�Km(ka�)

� iZ�1

s K 0

m(ka�)] +m2(1 + �2)[Km(ka�)]2 = 0 (2)

whereKm(�) are the modified Bessel functions of the second kind,
k is the free-space wavenumber, and� = (h2=k2 � 1) .
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Fig. 1. Dispersion of impedance-wire modes.

If m = 0, (2) splits to two separate ones, for axially-symmetric
TM and TE modes. Following [1] and using one-term approximation
for K0(ka�), one finds that ifka� 1 there is a root corresponding
to the modeE01

h=k = f1 + i2Zs[ka ln(�ikaZs)]
�1g1=2: (3)

If m 6= 0, (2) has a more complicated structure because nonsymmetric
modes are hybrid ones, with all six field components present. The
most interesting is the casem = 1, as in this mode family there is
another principal mode having no cutoff. By using two terms of the
series expansion ofK1(ka�) (one is not enough!), we arrive at the
following expression valid ifka � 1:
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1=2

(4)

for the wavenumber of the hybridHE11 mode, where
 =
1:7811 � � �. If contrary ka � 1, then for the both modes the
wavenumbers tend toh=k = (1 � Z2

s )
1=2.

In the case of a constant lossless impedanceZs = iZ, Z > 0, the
results of numerical solution of (2) by the Muller method are shown in
Fig. 1. The dispersion curves agree with (3) and (4) for smallka < 1
and show almost the same value afterka = 5. Thus, Sommerfeld’s
mode strongly dominates in the thin-wire propagation case studied in
[1]. Probably this explains the reason of overlooking the modeHE11,
for example, in [7]. However, in the conformal antenna geometries
normally ka > 2 that makes thin-wire approximation inapplicable.
In Figs. 2 and 3, we present the integrated numerical data on theE01

andHE11 modes in the form of equal-value curves ofh=k in the
plane of parameterska andZ. Except for the rangeka � 0:5, the
two principal modes are in strong competition.
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Fig. 2. Wavenumber relief for the Sommerfeld’s mode.

Fig. 3. Wavenumber relief for the “dipole” mode.

III. D IELECTRIC COATING ON A METAL CYLINDER

In fact, the surface-impedance model serves as a convenient
instrument to simplify the analysis of perfect metal conductors
covered with a thin dielectric layer [5]. This implies that the actual
value of impedance is given as

Zs = i(�r)
�1=2 tan[kd(�r)

1=2] (5)

whered and �r are the thickness and the dielectric constant of the
layer. The domain of the better accuracy of (5) is normally associated
with �r � 10 [5] and a realistic substrate thickness is around 1 mm.
In Fig. 4, we present the dispersion curves of the principal modes on
a dielectric-coated cylinder. Due to the frequency-dependent behavior
of (5), now both modes have the wavenumbers tending tok at the
lower frequencies, although theE01 mode is strongly dominant.
However, if ka is slightly greater, the both modes propagate with
nearly equal wavenumbers. A known defect of the surface-impedance
model is that (5) may turn to infinity if the substrate is assumed
lossless. However, this model enables one to simulate the presence

Fig. 4. Dispersion of modes on a coated cylinder.

of the higher order modes, which have nonzero cutoffs. The nearest
of them, denoted asHE12, is also shown.

IV. CONCLUSION

By using a simple model, we have shown that in a realistic
cylindrical antenna geometry, not one but two different guided modes
E01 andHE11 can be excited whatever thin is the substrate. Both
modes should be taken into account in a full-wave analysis of a
conformal antenna performance. Actually, the hybrid mode, which
we reported here, is similar to the so-called “dipole” principal mode
of a dielectric fiber [6]. Dispersion equation for the hybrid modes
on a dielectric-coated metallic cylinder has been known before [6],
but no numerical results were given, except for [4]. In [8], an
erroneous assertion on theHE11 low-frequency cutoff was found. A
correct conclusion that here this mode has no cutoff seems to be met
only in [4] and [9]. Zero cutoff frequency means that a mode can
propagate however thin the substrate. This fact has a fundamental
nature and can be studied by the surface-impedance approach in
spite of the approximate character of (5). Our final remark is that
arbitrary excitation will launch two modesHE11 having the fields
of orthogonal symmetry.
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