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Excitation of a round, partially shielded, dielectric rod by elementary electric and magnetic sources is
considered in a vector formulation. The Riemann-Hilbert method reduces the problem to finding the spectral
densities for the fields by solving two coupled infinite systems of linear equations. These systems can be solved
to any specified accuracy for arbitrary parameter values, and in this sense the solution is rigorous. Excitalion
of a cylindrical slit line by 2 longitudinal magnetic dipole is considered in detail [the line consists of a rod
shielded by a metal layer with a narrow longitudinal slit and the radius of the rod is assumed small compared
with the wavelength]. The structure, regions of generation, and distribution of energy among wave fields of

various types are studied.
PACS numbers: 84.40.Sr, 77.90. + k

Dipole excitation of an open waveguide (a round dielec-
tric rod) was first considered rigorously in Ref. 1. Par-
tially shielded round dielectric rods (Fig. 1) form a new
class of open model waveguide structures in which the
properties of a metal waveguide are combined with those
of a dielectric rod located in empty space. Analysis of the
natural oscillations® ™ has revealed that the case when the
shielding metal layer contains a narrow slit is of particular
interest; in this case, the structure forms a cylindrical
slit line (CSL). Because of the distinctive "glit-like" char-
acter of the fundamental wave, CSLs have many advan-
tages.®

In this paper we rigorously examine the excitation of
an arbitrary partially shielded round rodby lumped sources
and discuss in detail the case when a CSL is excited at low
frequencies by a longitudinal magnetic dipole located at
the center of the slit. We use techniques related to the
methods in Refs. 1, 3, and 6 to study the structures, regions
of generation, and energy distribution among wave fields
of various types. ' ‘

1. FORMAL SOLUTION

We assume that the infinitely long, round dielectric
rod (Fig. 1) with radius a and dielectric constant ¢ is coated
by an ideally conducting thin metal layer. A longitudinal
slit of angular dimension 20 extends along the metal layer.
The rod is excited by an elementary electromagnetic (EM)
field source lying outside the rod. We denote the Hertz
electric and magnetic vectors for the primary field by Vg
and W,. We need to calculate the secondary field, which
must satisfy the Maxwell equations, obey the boundary
conditions, decay at infinity, and have the property that the
encrgy is finite near the sharp edges of the metal layer.

We introduce a cylindrical system of coordinates (r, ¢,
z) coaxial with the rod. If, for example, the source is a
longitudinal dipole of length b« A (where A is the wave-
length) with an electric or magnetic current of magnitude I
located at the point (I, ¢y, 0), all of the Hertz vectors for
the primary field vanish except for the axial components
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Jns Hr(xl) are the Bessel and Hankel functions, g= */kz—hz, k=
21w /A =w /e, and the radiation condition implies thal we must
take the branch of the square root for which Img> 0 as

h— %, and the path of integration goes around the branch
points h=k and h==k from below and from above, respec-
tively.

Itis also helpful to express the primary field in the
form (1) when the rod is excited by an arbitrary elemen-
tary source. In general, none of the six components of the
field will vanish when the rod is present. They can be
described in terms of the axial components (Eg, Hz) =
0%/8z%+ k¥e) (V4 W), which we express in a form analo-
gous to (1):
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Here and below, p= Ve -h?® and the sums are over n from
— o to +eo.

The original problem reduces to a system of Dirichlet
and Neumann boundary-value problems for the spectral
functions E(h), H(h), which are coupled by the maltching

M a
28 2
‘i 1 ‘g 2
! il
|
: \
*a l\
"" il l~\x\._ TR T2k ML
g x KVEZ” xvVe

FIG. 1. 1) fast waves; 2) slow waves.
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conditions on the slit.
on the fields (3), we find after some manipulation the fol-
lowing system of coupled equations which involve sums of
trigonometric functions:
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primes denote derivatives with respect to the argument.

Here and below, x=ga, y

We use the Riemann—Hilbert method® to invert the
static part of the operators (4), (5). We then get two in-
finite coupled Fredholm systems of linear equations of the
second kind:

an (22 4 ¥*)
— S8, -+ ansfe, + Gy (O =

A
“m o)

e (= 5 ) | (=0,

Tz (e +1) e
g E[Af'" +ﬁnEHP"+_(fiu-(D zF,,D_,)]
(__,1)m+uT (__u):O, (7)

—In[(1 % u)/2], Ton=Vati/ 0 T =Vaity/
(u) are defined in Ref. 6 (wewrite

where Ty (x u)
m and the functions Vm—1
u=cos 8). We remark that the operator determined by
system (7) belongs to an even smaller class of operators
than the Fredholm class, since the determinant of system
(7) is normal, This ensures that the method of reduction
will converge to a solution of (7). If the wavelength islong,

kave—0, or if §—~0 or m (a narrow slit or a narrow ribbon),

the matrix corresponding to (7) is nearly diagonal and
system (7) can be solved by iteration. We observe alsothat
the change of variables
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If we impose the boundary conditions

(D —aF, D)} &,

reduces Egs. (7) to a form that does not contain any infinj;
sums in the right-hand side.

2. DETERMINATION OF THE SPECTRAL DE\ISITIES Or
THE EM FIELD COMPONENTS

The spectral density functions for the axial field com
ponents can be expressed in terms of the coefficients p,,
as Fourier series outside the rod,

E(_, (h‘) = EE"’;—d"i Hn (gl‘) e‘"?)
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with similar expressions holding inside the rod.

The series (9) and the analogous series for E) and
HE) converge very slowly for r= a, i.e., near the surface
of the rod, since the terms decay no faster than O(n‘a/z)a
After substituting the coelficients p,,, ppn given by
system (7) into (9) and changing the order of summation,
get the following functional series:
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and second expressions in the curly brackets, respectivel
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The above series (10) now converge as O(n's‘z) or
better owing to the rapid convergence of system (7). In
addition, it can be shown that each of the functions 5} i) E

ni) H S(i)H S( ) HE separately satisfies the boundary

condition at the edge of the slit. In other words, each ter
of series (10) satisfies this condition, regardless of the
error in calculating ylr;: and 'Vé{' It is also important to
note that the slowly converging infinite series defining th
functions in (12) can be rearranged and combined into a
principal part which also satisfies the boundary condition
at the edge of the slit.

3. PROPERTIES O LIIE SPECTRAL IFUNCTIONS
The evaluation of the field amplitudes inside and out-

side the rod requires that the integration (3) be carried
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out. In order to derive appropriate asymptotic estimates
as z— « it is necessary to examine the properties of the
spectral functions E (h), H(h) for the total field in the com-
plex h-plane. It can be shown that E(h) and H(h) are analy-
tic functions on a double-sheeted Riemann surface; they
have only the two branch points h== k and a certain number
of coincident poles. The latter are determined by the same
dispersion equation for a partially shielded rod,

Det (/L) ==
(85T, (4) = B,,), & (neET,, (@)L > g
B (ne (—1)"** T (=), ((—1)"*" BET (=) — B, |, nmeo

(13)

where Det (h) is the determinant of the block matrix of sys-
tem (7). We note that any roots of (13) must be distributed
symmetrically about h=0, and it is convenient to take the
cuts from the branch points as shown in Fig. 1.

The analysis of the existence and location of the roots
of (13) is 2 much more complicated problem than the study
of the dispersion equation for a round unshielded dielectric
rod,! not to mention the even simpler case of a closed round
waveguide. The method of Ref. 7 shows only that the spec-
trum is discrete in the h-plane and that the roots of the
reduced equation (13) converge to the eigenvalues of the
original problem as the order of the reduction increases.
However, several properties of the solutions of (13) can
be found by studying Eqs. (13) iteratively as § —0 and using
some physical intuition.

1) The real roots of (13) lie in the interval k=h< kve.
There are finitely many such roots. 2) There are no purely
imaginary or real roots outside the interval k=h< kve, nor
are there any complex roots in the region where Im g> 0.

3) There is a region between the cuts from h==+k and the
imaginary axis where Img< 0, and here (13) may have
complex roots. 4) When the frequency, or more precisely,
the frequency parameter x =kave -1 increases and becomes
equal to some characteristic (transitional) value Kqi» one of
the complex roots hj of (13) becomes equal to k fhiky;) =KkI,
after which hj approaches the value kve. The quasi-TE,
wave is an exception, as was shown in Refs, 2, 3; the TEy
wave is the fundamental mode as 6—0, and for this mode we
have hy—k Y (e +1)/2.5). If the slit is sufficiently narrow
(p—0), each complex root hj also has another characteristic
frequency k,;. We can regard k,i as a critical frequency
with the property that when k decreases and becomes equal
to kqi» lhi] assumes its minimum value (close to zero) and
arg hy (ky;)=m/4.

The location of the zero hj is shown schematically in
FFig. 1 by the dashed line. For comparison, we recall that
each eigenvalue h; for a closed waveguide containing a di-
electric must either lie on the real axis inthe interval 0=
h< kve or (at sub-critical frequencies) on the imaginary
axis. Only properties 1-4 above hold for an unshielded di-
electric rod!, and for [requencies less than the transition
frequency #y; (which is usually called the "critical" fre-
quency), Imh; increases rapidly (cf. the dashed and dotted
curve in T'ig. 1).

In order to evaluate the fields, we deform the integra-
tion contour so that we get integrals along a cut in the h-
plane plus a sum of residues corresponding to the poles of
the integrands.! The residues at the poles on the real axis
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correspond to slow surface-wave modes. The residues a’
the poles where Img< 0 correspond to fast, outward-
propagating quasimodes which are damped only weakly wh
K > Kp;. The loop integrals around the cut correspond to =
additional field (a "lateral wave" in the terminology of Re
8).

4. EXCITATION OF A SLIT QUASI-TE;, WAVE IN A
CYLINDRICAL SLIT LINE

We take the excitation source to be a magnetic dipole
oriented along the rod axis and located at the center of the
slit, The primary field is then given by Egs. (1), (2) with
©=0, l=a, dn9=0-

We use Van der Waerden's method to estimate the
functions (3) that describe the secondary field far away
from the dipole. Making the change of variable ih=—s+ ik
we get

(E®), H®)=ic,e™
14
X [ (B (), 1 (5)) e~ (

L

where the contour L goes down the imaginary axis (Fig. 2)
The slits extend to the right and left of the points s=0 and
s = 2ik, respectively, and are parallel to the real axis,

We use Cauchy's theorem to deform the contour L to
the right; the integral in (14) is then replaced by the sum ¢
the residues of the integrands plus an integral over the loc
L' along the slit extending from the point s =0 (Fig. 2). It
can be shown that Watson's lemma applies after the inte-
grands are expanded as power séries near s=0.

In what follows we confine ourselves to the case of
greatest practical importance, when the slit is "exponen-
tially" narrow, i.e., |In"1g| «1, so that the rod forms a CS.
CSL, and the wavelength is long enough so that kave< 1.
The last condition implies that

Vs L

L1860 ()5 13)
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i.e., the line is supercritical for all of the higher modes.
There is only one pole in the s-plane; it lies either on the
imaginary axis or close to it, and it corresponds to the
fundamental quasi-TE, slit mode.??

We use this terminology because the slit wave is
rigorously a TE-wave in a line without any dielectric,!®
and the eigenfrequency (critical [requency) is equal to

o

FIG. 2
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which tends to zero as §—0. Here we must recall that for
any internal Neumann problem for the Helmholtz equation,
the spectrum begins with a zero eigenvalue which cor-
responds to an eigenfunction which is constant over the
entire cross section of the waveguide. Maxwell's equations
imply that the value of this constant is identically zero.
Thus, in 2 closed waveguide a TEyy mode with zero cutoff
frequency exists only by convention (its amplitude is zero),
so that the TE;; mode is usually regarded as the fundamen-
tal mode. However, the presence of the slit causes the
amplitude of the TEy, mode to be nonzero (it is an "out-

flowing" mode!®), and the TEq mode becomes the fundamen-

tal mode of the slit structure. If the waveguide is filled
with a dielectric, the slit wave becomes a hybrid wave with
a dominant H, component, i.e., it becomes a quasi-TEg,
wave '(analogous to a quasi-TEM wave in strip lines).

The location of the pole corresponding to the slit wave
is given by

5y b (k= Do)y o= hy -y =k [1 — 25 (e — )% (16)

where x% is a solution of the equation to which (13) reduces
if terms O (r<2x4 Inx) are neglected,

o ot — T3 (—w) F 2 (832 F 2 H 2 (A2 A7)

N (__1/"],2;,;2) =0T — 1.781.
It is not difficult to show that to first order the approxima-
tion (17) gives2

= - o . 674
ho=k[—"‘2_1 -;—(ka) 2In ‘sm7] . (18)

Depending on the values of the parameters «, & and§,
we find that the slit wave may resemble either a fast out-
flowing wave or an undamped surface wave with a retarded
phase velocity. The transition frequency separating these
two types of behavior is equal to [cf. (17)]

o= (YT )" 0 (T5)- )

Below the transition frequency radiation damping oc-
curs:

B = (K — i) (8 To) ™ + O (T2) 0<ryy— <. (20)

The critical frequency above which a weakly damped
outflowing wave can occur is equal to

2(e—1) Th = (21)
29 = [ﬁmﬂ + 0 (T%)
and at the critical frequency,
hy (rgg) ==&k (m/2)" Tg =+ O (T3)- (22)

As 6—0, both of the above frequencies become very
small compared to Ky in (15), so that the CSL emits over
a wide frequency band. When condition (15) is satisfied,
all of the other poles of the integrands lie far from the
imaginary axis in the s-plane, and their contribution to the
total field is negligible.

We evaluate the residue at the point s, corresponding
to generation of the quasi-TEgy wave. Limiting ourselves
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to the approximation of an "exponentially” narrow SlitA-w
see that ! e

P e i

EW® (h) =0 (ez)' H® (h)y= ch{){emsst) " (/1, r, %) [1 +'0 (In? 0] (23)
+ Q® + 0 (). oo

Solution of system (7) to first order then gives
(1 = (Dl — TF D) O [7F, (1 — T o)™ + 0 (Te)- (24)

Only the first of the two terms in (23) for the magnetic
field is singular at the point hy; this singularity is due tpthe
denominator in vy, which reduces to Eq. (17). Evaluation
of the residue therefore gives the result

E® =0 (1), HE® =K,SH (b, 7, o) [1 4000, (25
where

K, = coZglyIn (124 28) (2ha™)™ (26)
can be regarded as the excitation coefficient of the slit
wave; K; vanishes at the transition frequency but increases
rapidly away from Kg.

The function Séi)H (hg T, @) describes the field con~
figuration of a slit wave traveling down the CSL at a con
stant velocity hy away from the dipole; the configuration 1s”
the same as for the corresponding natural mode.® The
electric field is for the most part transverse (Ez <Ep E )
and concentrated near the slit, while the axis component
(25) dominates the magnetic field and reaches a maximum
inside the rod at a point opposite to thé slit,

5. EVALUATION OF THE ADDITIONAL FIELD INSIDE
AND NEAR THE ROD

In addition to the fundamental mode (25), there is an
unlocalized field given by the integral around the cut extend-
ing from the point s =0. This additional field decays alge-
braically provided that the fundamental wave (as a function
of the parameter «) either does not decay as z — = or else
decays exponentially, Our problem is to find the asymptlo-
tic behavior of the additional wave,

Up to terms of order [1+0 (In~'9)] we can reduce the
integrals along the cut to
. G E -3 (l
B = —2ice'™ S Re[1# S5 # 4 Q)] e ds. -

[}
by using the circuit relations for the cylinder functions.

We first calculate the additional field inside the rod.
The factor e SZ causes the integrand to decay rapidly, and
only s values close to 0 contribute significantly to the
integral, If we introduce the quantity sy = (kza?) Y2, we
can show as in Ref. 1 that the functions in the integrand
may be replaced for s= s, by their approximations for
| x| «1 provided the conditions kz>1, kz > (ka)? are satis-
fied. We may therefore substitute the expressions

= — oy = 3+ O G ) 28)
* 0—'1
J ) 2.2 29)
S f=— [xgoL (L) 42— 5 ]-I— 0 (2. (

Here

L(t)=2ln—;-|1—t+(£’—21c050+1)'/-l_

!
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Since x%=~—2iksa? we get the result

=31 z),
(30)
where A=1/2- e'yka A similar method can be used to es-

timate the additional field in the region kz>1, kz > ( (kr)?
outside the rod. Here |gr| «1, so that we can write

4
J [ V’TO
2fo L #*

Evaluating the integral using the above procedure, we
conclude that

i b
|

-,'22 3 ; =
e (et L))

(31)

SiH =

(: '“’)—}—ln it ]-}—O(xslnz)

), (32)
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where A;=1/2" e3/2-'y kar. It can be shown that near the
frequency kqg the additional field remains appreciable at
significantly greater distances from the dipole. Since

A?—l/z (x +2x2)[1+O x*lnx)], we must replace k3 — k% in

Eq. (28) by — 2x% close to the transition frequency, after
which the asymptotic behavior of the resulting integrals
must again be found, We obtain

22 . k2
- G| S G N
Pt A0 ikz
Hg—)z_ﬂzf_ﬂmlnzA%*z +0(z ). 34)

We note that the additional field decays more slowly as
z— = than the field of the outflowing wave, which decays
exponentially, Nevertheless, at moderate distances from
the dipole satisfying In(z/a)>h"z, the outflowing slit wave,
i.e., the residue at the pole (16) for kg < k < Ky, may con-
tribute appreciably or even dominate the total field near
and inside the rod.

6, SPHERICAL WAVE

We can use the standard method of steepest descent to
calculate the field in the far zone outside the region con-
sidered in Sec. 5. In this case, the field is regarded as a
spherical wave whose amplitude-phase distribution is
described by the components E ¢ and Hy, where the angle
@ in thé spherical coordinate system (R, ¢, @) is mea-
sured from the z axis. It suffices to evaluate the potential
WS.—) by setting kR sin® X »1 and using the fact that in the
far region E o= "Hy =k?sina W;‘

SYZAYS S

FIG. 3. Directional patterns for a spherical wave 6=1°, £=2.25, %yy=0.48,

Myp 70,275, a) w=0.1< Kyq, b) ®=0.28; ¢) 0.23; d) 0.35; &) 0.4; f) n=
0.6 > o,
14'25 Sov. Phys. Tech. Phys. 28(12), December 1983

The potential W;_) is given by an integral similar to

(3), and analysis reveals that there is a saddle point at
g=kcosa. In the limit kR— « we can neglect any poles
hj that might be present near hg and can even neglect the
residues from these poles when we deform the contour of
integration into the path of steepest descent, since their
contribution is exponentially small. However, at the transi-
tion frequency the pole hy=k coincides with the saddle point
hg when @ =0 and the method of steepest descent does not
apply in its usual form.

The method of steepest descent gives the following ex-
pressions for the field:

E,= —I = ch*sina [l 4+ (@, ¢) -}, (o, @) ("), (35)
where
. 2% s &.2_1.”5 (4f cos 9+ x, cos 27)
Uy (o 9)=—af = o — (2 F 220) (2 — 22 I (1Z,0Z)
o g - ii’:::;c;;“? _%XEIJ(LS:.—]—ID T)' z, = ka sin o.
2 ; TR 22

Here we have recalled that for ka Ve< 1 the cylindrical
functions can be expanded in power series, and that for a
narrow slit Tpow =[(— 1)/ |n] J+0(6%).

Analysis of (35) reveals that the amplitude and phase of
of the spherical wave depend only weakly on the coordinate
@. Away from the transition frequency, we have &, (@, ¢) =
¢} (azl na), & @, ¢)=0 (@) as ¢ —0 and the spherical wave
vanishes as it approaches the axis of the rod. However, the
poles near the saddle point cannot be neglected if x =k¢ and
a —0 or if kR is not sufficiently large. In this case, the
modified method of steepest descent®® must be used to
estimate the integrals, according to which the contribution
from a pole is described by an additional probability inte-
gral of complex argument.

Calculation of the directional pattern (35) reveals that
for kyg€a < ayy there exisls an angle ay,

(s_-1) ‘Lm'—'l [1 l“"’, n 1 (L,,, -)] (3G)

i ? —
sin?ay =

for which the real part of the denominator of ¢, (&, ¢)van-
ishes, so that ® (@, ¢)=sin g O (Inkasinay). This implies
that the radiation pattern of the spherical wave contains a
narrow lobe along the direction @ (Fig. 3). If « is not
within the above interval, the rod distorts the wave emitted
by the dipole only slightly, since a «A.

7. RADIATION RESISTANCE AND ENERGY DISTRIBUTION
BETWEEN A SPHERICAL AND A SURFACE WAVE

The radiation resistance R, which is related to the
encrgy by P=!/2 -1!R, is a measure of the oulput power
efficiency when the CSL is present. Since a spherical wave
is present inthe structure for all frequencies x, while for
K > Ko two additional undamped slit waves are excited and
carry off energy from the dipole ih the directions z— =% o,
we have

nx
\ lU'
R=R 37
sph'}—! Rslll' ’>/10l ( )
Repn=—z | | BH.R? sin adads,
e (38)
Raiw= 5oz | | (B EH}) rdrds.
(L)
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FIG. 4. Radiation resistance vs fre-
quency parameter %; 0 (deg), €, %y,
Hpe 1) 1, 2.25, 0.46, 0.275; 2) 1, 10,
0.46, 0.42; 3) 10, 2.25, 0.64, 04; &)
10, 10, 0.64, 0.575.

We can express R alternatively in terms of the field
amplitude at the dipole

R=-—b/l -Re H{ (a, 0, 0), (39)

by using a standard theorem concerning the complex power;
here Hz') is given by the integral in (3). As pointed out in
Ref. 1, in order to separate out the real part it is con-
venient to introduce a cutinthe complex plane which ex-
tends from the branch point h=k to 0 along the real axis
and then ascends the imaginary axis. By deforming the
contour as in Sec. 4, we reduce the integral to a sum of the
residues at the poles on the real axis plus a loop integral
along the cut. Only the portion of the integral taken along
the interval [0, k] of the real axis is real and remains
finite for ¢=0, r—a, z—0. We note that the complex poles
(in particular, the pole hy) do not contribute to (39) when

K < Ky since for our choice of cut they lie on the other
sheet of the Riemann surface. In other words, the leaky
waves do not participate in energy transport because they
decay exponentially where they are defined. After a good
deal of calculation, we thus obtain

&

ooy 0 R fqSE Y o, )+ Qe (40)
Ry Wk
0
Tstie 3VT (o — 1) (edy — #20F 0 () {42y — %)
Ry 128 WVE (zF 1) — %o (2 — 1)
{41)

X’i"‘%o In %;(*?o’—y'z)" 2],

where R0=2(kb)2/30 is the radiation resistance of a dipole
in vacuum.

Figure 4 shows the calculated frequency~-dependence of
the radiation resistance. The curves show that the energy
carried off by the spherical wave is a maximum at the
critical frequency ko and has a minimum near the beginning
of the interval Ky < Kk < kg For k> Ky undamped surface
slit waves are generated, and the energy that they carry off
is comparable to the energy removed by the spherical wave
and may even exceed it as the frequency increases.

CONCLUSION

We have thus found that at high frequencies, each eigen-
mode of a partially shiclded rod behaves as an undamped
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slow wave;however, as the frequency decreases, there jg o
transition frequency «yj [or which outflowing modes are
generated. In contrast to what is found for an unshielded
dielectric rod, in our case the outflowing waves remain
largely undamped not only for frequencies le'f*but through-
out a range extending up to the critical frequency K,i. Beloy
K,; the damping increases rapidly, so that the partially
shielded rod behaves like a ciosed waveguide.

The quasi-TEy, slit wave is the fundamental mode if
the rod is a cylindrical slit line (6 «1), and both of the
characteristic frequencies (transition and critical) for this
mode are extremely low. This means in practice that the
frequency band for single-mode operation is wide (two oc-
taves or more), and the geometric dimensions of the line
are an order of magnitude smaller than for a corresponding
TE,;-mode closed waveguide. The field of the slit wave is
localized near the slit, which ensures that the effective
dimensions of the line are small, and the retardation isless

than v (e +1)/2.

Because of their bandwidth and the fact that outflowing
waves are generated for a wide range of parameters, cy-
lindrical slit lines can be employed as antennas as well as
microwave circuits. IFor example, it has been sugges
that CSLs be used in miniature scanning millimeter-range
slit emitters'! with a diameter at least 4-6 times smaller
than for comparable waveguide emitters.

When a CSL is excited by an elementary source, the
EM field in the region z>kr® has the form of a spherical
wave whose directional pattern contains a lobe due to radia-
tion from the outflowing slit wave when kyg< k< xyg. The
near field (for z «kr?) is a superposition of the leaky or
surface slit wave and the additional wave, which decays
algebraically, The latter appears in addition to the eigen-
modes because of the open waveguide structure.
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