
Excitation of a partially shielded round dielectric rod by lumped
sources

A. l. Nosich and V. P. ShestoPalov

Institute of Radio Physics and Electronics, Academy of sciences of the ukroinian ssR, Khar'kou

(Submitted December 9, 1982; resubmitted March 4, 1983)

Zh. Tekh. Fi2.53,2)12-2321 (December 1983)

Excitation of a round, partially shietded, dielectric rod by elementary electric and magnetic sources is

considered in a vector formulation. The Riemann-Hilbert method reduces the problem to finding the spectral

densities for the frelds by solving two coupled infinite systems of linear equations. Thesc systclns can be solved

to any specified accuracy for arbitrary parameter values, and in this sense the solution is rigorous. Excitation

of a cylindrical slit line by a longitudinal magnetic dipole is considered in detail [the line consists of a rod

shielded by a metal layer with a narrow longitudinal slit and the radius of the rod is assumed small compared

with the wavelength]. The structure, regions of generation, and distribution of energy among wave fietds of

various types are studied.

PACS numbers: 84'4O.Sr, 77.90. + k

Dipole excitatiou of an open waveguide (a round dielec-
tric rod) was first considered rigorously in Ref. 1' Par-
tially shielded round dielecfric rods (Iig. 1) forrn a uerv

class of open model waveguide strucbures in which the

properties of a metal waveguide are combined with those

of a clielectric rod locabed in emply space. Analysis of the

nabural oscillationsz-4 hts 
""uealed 

lhal the case when the

shielcling meLal layer contains a narrow slit is of particular
interest; in this case, bhe structure forms a cylindrical
slit line (CSL). Because of the distinctive "slit-liken char-
acLer of lhe fundamenbal wave, CSLs have many advan-

tages.s

In ttris paper we rigorously examine the excitation of

al arbitrary partiatly shielded round rod by lumped sources

and discuss in delail the case when a CSL is eicibed allorv

frequencies by a longiludinal magnelic dipole located at

the cenler of the slit. We use techniques related lo the

melhods in Refs. 1, 3, and 6 lo study lhe slructures, regions
of generalion, and energy distribution among wave fields
of various types.

1. FORMAL SOLUTION

lVe assume bhaL lhe infinitely long, routld dielecbric
rod (Fig. 1) with radius a and dielectric consbant e is coaled

by an ideally conclucting thin melal layer. A longitudinal
slib of angular dimension 26 exlends along the metal layer'
The rocl is excilecl by an elemenlary electromagneLic (ENI)

Iield source lying oulside the rod. We denote Lhe Herlz
elecbric ancl magnetic vectors for lhe prinrary field by Vg

and Ws. We need lo calculate lhe secondary field' which

musl salisfy the Maxwell equaLions, obey the boundary
condilions, decay al infinity, and have lhe property that the

energy is finite near lhe sharp edges of lhe metal layer'

We inLroduce a cylindrical system of coordinates (r' I'
z) coaxial with lhe rod. If, for example, bhe source is a
longiludinal dipole of Iength b<<tr (where L is Ll're wave-
tength) with an eleclric or magrtetic currenl of magnitude I
locaLed at the point (1, qs, Q), alI of the Flerbz veclors for'
the primary field vanish except for the D(ial components

tvo t,tro\-^ f --r\J,|Jl'l-"016

wnere

i tr", D.\ et"eei^'dh, (r)

FIG. 1. 1) fasr waves; 2) slow waves'
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Jn, I{$) are the Bessel and I]ankel functions, t= '/fr-frf t=
2r/X)u /c, and the radiabion condition implies thaL we must

Lake bhe branch of bhe square root for lvhich Img> 0 as

h*1e, ancl the pabh of integration goes around the branch
points h=k and h=-k from belorv and from above, respec-
lively.

Itis also helpful to express bhe primary fieid in lhe

form (1) rvhen the rod is excibecl by al arbilrary elemeu-

Lary source. Iu general, notle oI the six componenls oI the

field will vanish lvhen the rod is presenL. They can be

described in terms of the axial componenls (8, H7) =

@2/azz +k2e) (tlz, w2), rvhich we express in a form analo-

gous to (1):

(t(-r (/r), H,-'(h)J: ) (8", y|) Htt' (gr)et^1, r) a. (3)

I-Iele and below, p= t/T%-ttttncl bhc sums ale over n from

-@tO +@.

The oliginal problem reduces bo a sysbeur of Dilichle[
alcl Neumann boundary-value problems for lhe spectral
funclions E(h), Il(tr), which ale coupled by the rnaLchiug
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condiLions on the slit. lf we impose lhe boundary condibions

on the fields (3), we find afber some maripulation the fol-
lowing system of coupiled equabions which involve sums of

trigonome tric functions :

)p"e;,v - 0, 0 < ls I (.,
\^ r-r.,"t-\.[na anlzzru2\
Ay^t " t- -,41^9^+ "n"^v^* # (D'"- il^D.)

+ #f{" @:- lF.d^)}'"'', ls | ( o,

)P"r"'-0' lel(0, (4)
tn

\,, r . r.;'r - \ Ina,, ;-1,,n^ -L @' I vzl l^
/rr^l''1" - /tl-nr^ | ('-nrn I r2tl 

-F\ ^: 
(D: - oF ^o:lj e'^'t ,

(5)

where

o(lPl("'
p^- A^I^, p^- A',1',rft;!," atr4J-++(D"-+J,

'ltr'I

, l'" ^ n: iilro! (e : 1)
l,: -::1-, I n : -;71-, o : 

-t;1;-T1l-,g. n

^ ihka2 1e-11 "_1_p(t,fvr)=r" "!!:^ 
("'*c"ll^

P:-f , ei y- u"_ t,) , ,. ' L - ET|;=VT.

-2Luz ( - - n2hzkzaz(.-1\21
.tf : I n | - -ffi f 1,, - t' "- - ?irT;=rT j,
A,v 

- 
| ,, 1-y @2 * v'l l"F" (6)

-tr-l''l I t 
-F

Here and below, x=E^r Y-pa, Jn=Jn(Y), Hn=Hf )(x), and

primes denole derivatives rvibh respect to lhe argumenb'

We use lhe Riemann-Hilberb methocl6 to invert the

slatic parl of bhe operalors (4), (5). We then get trvo in-
finile coupled Fredholm systems of linear equalions of the

second kind:

,... - )fofo"f c^efp" +##!+@|-aF^D^)2L "','

,"+!" .ortlt /,,\-n'Iffi;\d;- rt ro")) I 'r" \41 - 
w'

r," - )f alr," t g,,Ip 
^ 
+ $ffi toi' - * "D ") )

-L

(-1)--" 2." (-a) :0' ( )

where Tes(+ u) =-ln[(1 +u)/21, Tqr=Vnl1/n, Tmn=Vh-jr/
rn ancl lhe functions Vffi1t1u1 are defined in Ref.6 (wewrite

u=cos 0). We remark Lhal bhe operator delernrined by

sysbern (?) belongs to an even snraller class of operaLors

thar the Fredholm class, since lhe debernrinanL of syslem

(?) is normal. 'l'his ensures that the melhod of reduction

rvi-ll converge to a solution of (?). If lhe wavelength is long'

[<aV-e-O, or i-f 6-0 or 7r (a narrow sli! or a narrow ribbon)'
the rnalrix corresponding to (?) is nearly diagonal and

syslem (?) can be solved by iberabion' We observe also lhat

lhe change of variables

r,,; : Al-p. f a,rel'1,, -f #l,jTl 
-!"i), ( Di, - r F 

^D,,)

, ,"*u' t)'t -;;-:;ti \- " - - tt.d"\'

rl':^fr,.*P,.ljp"* E+I#(D^-,,I'"D") (8)
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reduces Eqs. (7) lo a form that does nob contain anyinfinit
sums in bhe right-hand side.

2. DETERIIIINATION OF THE SPECTRAL DFNSITIES OI
THE EM FIELD COMPONENTS '-I

The spectral densiby funcbions for lhe axial field conr
ponenbs can be expressed il terms of the coefficients pn,p
as Fourier series oulside the rod,

Ft-) il,\- \ (9" - d") H (dr\ Pi"?L \rL)- /,- H 
rtn\6tJv

wiltr similar expressions holding inside the rod.

The series (9) and the analogous series for E (+) and

H(+) senvslge very slowly for r= a, i.e., near the surface
of the rod, since the terms clecay no faster bhan O(n-3l2;n
n- o. After subsbibuting the coe.fficients p,.,, ptn given by

system (7) into (9) and changing lhe order of summation, r

get lhe following functional series:

pttt (lt): ) flsl!') E + P'*',

// (1) (/,) : ; tif rl-, r + BT'.s(r) "") + Q'*'

where

p(,f :0, pt-, : - 2h ,, ,,(gr) ,,"r,

.,t+t 
- !_\r (D;.- 'l",Di) /" I ^(pr) e;^e,Y - 7 4 ll"-r^lt;

g,-t : \. (Di;'[r^t-]1.,F, 
r r ^(gr) et,,?,_ .L) \tn_tntrtn

ano

,sr*ls- ) Z 1,;[] ^.(r"l ]-Je1|]r''r,
-,/t'ha\"ll 

I t II
\ -d )

,s(r) /r : " \- ,-r1--l a (-u\ ,l^r'i {!!!J!!, ) tt! ,,,(sr) \"'"
^ ,L) . r M\-LL)I;=F; l-4-' --jT- I"

,Srtr sr 
" 

1 \'f (u\ ,''!'^F,! {vt,rlen . 3!:lid \ r'-'.
- t y'' ''^v't7;=T; I 7;r", ' II;1,,, J- ',r,

Here llie superscripbs + and - correspond lo bhe 
-,1ald second expressions in Lhe curly brackels, respectivel

The above series (10) now converge as O1n-5-2) or
belter owing to the rapid convergence of sysLem (?).. IJl-

acldition, il can be shown ttrat each of the funcbionsS,\-l',
g (+ ) H. g (+ ) fl. g (+ ) I'lE separately sabisfies lhe boundary"t't t"n '-n
condiLion a[ the edge oI thc slib. ln olher words, each ter
of series (10) satisfies this condition, regardless of [he

error in calculating f f; and fjl. It is also imporlant to

rrole [hat the slowly convergiug in-tinile series defining th'

Iunctions in (12) can bc rearrarged and combined inLo a

principal parb whiclr also satisfics the boundary condilion
a.t Lhe edge of tho slit.

3. PROPER'I'ItrS OT TIII] SPEC'I'NAL FUNCTIONS

The evaluation of the field amplitudes inside and out-

side the rod requires that the inlegration (3) be carried

,1C

(11
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Det (lz) :

| (A,ET,ry@)-6 "), 
dQteE^7,^,(u)\-

I p (r'f (-1)"' T^,,(-u)), {(-1)"'^1T,,," (-u) - 3-"} ,,,,,,=--

out. In order to derive appropriate asymptotic esLimates
as z- o it is necessary to examine lhe properlies of the
spectral functions E(h), H(h) for the total field in the com-
plex h-plane. It can be shown that E(h) and H(h) are analy-
bic functions on a double-sheeted Riemann surface; lhey
have only the two branch points h=+ k and a certain number
of coiacident poles. The latter are deiermiaed by the same
dispersion equation for a partially shielded rod,

- 
f l

(13)

where Det (h) is the determinant of the block matrix of sys-
lenr (7). We note bhat any rools of (13) must be disLributed
symmelrically aboub h=0, and i! is convenienl to take lhe
culs from the branch poinls as shown in Fig. 1.

The analysis of bhe existence and Iocalion of the roots
of (13) is a much more complicaled problem lhan bhe sludy
of the dispersion equation for a round unshielded dielectric
rod,1 nol to mention bhe even simpler case of a closedround
waveguide. The melhod of Ref. ? shows only that the spec-
hrum is discrebe in the h-plane and lhat the roots of the
reduced equalion.(13) converge to the eigenvalues of bhe
original problenr as the order of lhe reducbion increases.
However, several properties of lhe solutions of (lB) can
be found by studying Eqs. (18) iteratively as g-0 and using
some physical inbuition.

1) The real roots of (18) lie in lhe interval k= h< k./;
There are finitely mary such roots, 2) There are no purely
imaginary or real rools oubside the interval k= h< ky'd nor
are lhere any complex roobs in lhe region lvhere Im g> 0.
3) There is a region bebrveen bhe cuts from h=+ k and lhe
imaginary axis where Img< 0, and here (13) may nave
complex rooLs. 4) When bhe frequency, or more precisely,
the frequency paraneLer x =kay'EJ increases ancl becomes
equal bo some characteristic (transibional) value K1i, one of
the complex roots h1 of (13) becomes equal to k [hi(r<1i)=kJ,
afler lvhich hi approaches lhe value t</e-. f ne quasi-TE..
rvave is an exceplion, as was shown il Refs.2, 3; bheTEs6
wave is bhe fundamenlal mode as g-0, and lor this modewe
have he-k ,f (1 +n7,Ls; if Lhe slit is sufficiently narrow
@--0), each complex root hi also has anobher characLeristic
frequency r2i. We can regard Kzi as a crilica-l frequency
tvith Lhe properby thab lvhen r decreases and becomes equal
to x2i, lhil assumes ils minimum value (close lo zero) and
arg ii @2i)or/4.

The localion of the zero hi is shown schenralically in
trig. 1 by the dashed line. For comparison, we recall thill
each eigenvalue hi for a closed rvaveguide conlaining a cli-
elecLric must eilher lie on bhe real axis in the inlerval 0 <
h < k./t or (aL sub-cribical frequencies) on the imaginary
uris. Only ploperLies 1-4 above hold for an unshielded di-
elccblic rocll, and for frequencies Iess than bhe Lransition
frcquency x,i (which is usually ca.lled the rcrilical'r frc-
quency), Imhi increases rapidly (cf. the dashed and dotted
curve in FiS. 1).

ln order lo evaluate the fields, lve deform the inbegra-
lron conbour so bhat we gel integrals along a cut in the h-
piane plus a sum of residues corresponding to the poles of
lhe integra-r'rds.l The residues aL the poles on lhe r-eala-\is

correspond lo slow surface-tvave modes. The residues a,
!he poles where Img< 0 correspond to fast, outward-
propagating quasimodes which are damped only wealily wh
4 > K2i. The loop inlegrals around bhe cut correspond to e

additional field (a rlatera.l waverr in the terminology of Re
8).

4. EXCITATION OF A SLIT QUASI-TE0o WAVE IN A
CYLINDRICAL SLiT LINE

We lake lhe excila[ion source to be a magnebic dipole
orienled along the rod axis and located at lhe cenler of thr
slit. The primary fie.Ld is then liven by Eqs. (1), (2) with
go=0, I =a, dn, =0,

We use Van der Waerdents nethod lo esbimate lhe
functions (3) thal describe the secondary field far alvay
from lhe dipole. Making the change of variable ih =- s + ik
lve geb

(E(r), fI(r)) :icoe'u'

x J {r'*' (s), ,{1(, (s)}c-"ds, (14

where the contour L goes dorvn the imaginary axis (Fig. 2)
The slits extend to the right ancl lef I of the points s = 0 ancl
s = 2il<, respectively, and are parallel. to the real axis.

We use Cauchyrs bheorem bo deform the contour L bo
the righ!; the integral in (14) is then rep.laced by the sum c

the residues of the inbegrands plus an integral over lhe loc
Lr along bhe slil extending from the point s=O (Fig. 2). It
can be shown thal lVaLson's Iemma applies afler the inte-
grands are expanded as power series near s=0.

In lvhai follolvs tve confine ourselves to lhe case of
greates[ practical importance, rvheu the slib is ilexponen-
liallyn narrow, i.e., I ln-lAl <<1, so lhat the rocl forms a CS.
CSL, and the wavelength is long enough so that kay'e< t.
The lasl condilion implies thal

- 1,r1 -l tt et. I nttz\t. (15)
"{,zt:l 

- 
;'Lt.8af O({l')i;

i.e,, the line is supercritical for aLl of the higher modes.
There is only one pole in the s-plane; il lies eilher on lhe
imaginary axis or close bo il, and ib corresponds to the
fundamenLal quasi-TEss slib mode.2'3

We use lhis terminoiogy because the slit wave is
rigorously a 'IE-rvave in a line rviLhoul any dielectric,l0
ard the eigenfrequency (cribical lrequency) is equal to

FIG.2
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, a r-'i: /1 _1_ t" 1n-, 51n 9" )tn:(-2ln sin 7) \- , rti . r

wnicfr tenas to zeroas g*0. Here we musu recall thal for

any inLernal Neumann problem for the Helmhollz equation'

the specLrum begins with a zero eigenvalue which cor-

"L.po"a" 
!o an eigenfunclion which is constanl over the

en|irecrosssec|ionoflhewaveguide.Maxwell'sequa|ions
imply thab lhe value of this conslant is ideirtically zero'

ttus, in a closed waveguide a TE96 mode wiLh zero cuLoff

frequency exisls on\r by convention (iLs amplitude is zero)'

so that the TE11 mode is usually regarded as bhe fundamen-

tal mode. However, lhe presence of the slib causes bhe

amplihrde of the TE99 mode bo be nonzero (ib is an rout-

flowing" modelo), 
"nd 

Uh" TE99 mode.becomes lhe fundanren-

lalmodeofthesliLsbrucbure.Ifthe.waveguideisfilled
with a ciielectric, bhe slit wave becomes a hybrid wave with

a clominant H2 component, i'e', ib becomes a quasi-TEsg

lvave'(analogous !o a quasi-TEM wave irr sbrip Iines)'

The localion of lhe pole corresponding to the slib rvave

is given bY

so:d(k- lto), ho:hn{ilti:kl|- r,zoz4(e-1)l'1" (16)

where xfr is a soluLion of the equation to which (13) reddces

if terms O (x2xalnx) are neglecled'

tvz *,.a- 8fr,j (-u) *"'(8 J-3'2 !,'2)a f Q'2 -12t2) (17)

x In (-1ini2r2) : O, 1 : 1'781'

Ib is no! clifficull lo show thab to first order the approxima-

tion (1?) givesz

h, : kl+ + | Wo)'tn- rin *l''.

^ro: (2lT *)'t',* o (r;J).
(1e)

Belolv lhe transibion frequency radiabion damping oc-

cur s:

tt'i:r (k2 -,r;'z) 
(Bh;f 0o)-r + O Q-,&), 0 '-( x,o - x ( 1' (20)

The critical frequency above which a weakly damped

outllowing wave caJI occur is equal to

,-^:[,2(,' - *) ]'"+o(r;J),.v L(ei-rrrooJ

ancl al Lhe criLical frequencY'

l,.o(rro1: e;'ttk ("12f fr 1-t + o (T-&)'

(2r)

As g*0, bolh of the above frequencies become very
15), so thal lhe CSL emiis over
hen condition (15) is sabisfied,
e integrands Iie far from the

ane, and their contribubion to lhe

tota-I field is negligible.

We evaluale the residue al the point sq corresponding

to generalion of the quasi-TE96 rvave' Limibing ourselves

1424 Sov. Phys. Tech. Phys' 281121' December 1 983
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to the approximation of an nexponentiallyi narrow slit, we i

see thab i'

Btrt th1-O1021, .i!(i' (/r):c01fed^"S61)n (/t' r' 9)t1 +O(ln-r011 (2Q) 
f

+ Q,.,+ O (0,). ".t I

Solubion of syslem (?) to first orcler then gives 
l

fi : (D', - j1oDo) aou [rzf'o (1 - Af f o0)]-' + o Q;iil' (24) l

orr1ythefirs|ofthetwotermsin(23)forEhemagnebic
field is singular at the point he; lhis singularily is due tpthe

clenominator itt yfl, which reduces lo Eq. 1t'7). Evaluation

of the residue therefore gives the resull

EGt-O(t)z), Hrtt:Ko,S[tr n (ho' r, q)e""'It f O(lrr-r0)]' (25)

where

Ko-- coaoz-lohr (pol2i\ (2hoot)-| (26)

can be regarderJ as the excilation coefficienL of the slit
wave; Ks vanishes ab ltre bransibion frequency but increases

rapidly away from ,(10.
/+ \If

The function Sot-'^'(ho, r, 9) describes the field con-

figuration of a slit wave traveling down the CSL at acon

stant velocity he away from the dipole; the configuration i5i
lhe same as for the corresponding nahrral mode.3 The

eleclric field is for lhe most part transverse (Es<<E1' Eg)

and concentrated near the slil, while the axis componen!

(25) dominales the magnetic field and reaches a maximum

inside the rod at a poinl opposite to thd slib.

5. EVALUATION OF THE ADDITIONAL FIELD INSIDE

AND NEAR THE ROD

In addition to the fundamenbal mode (25)' there is an

unlocalizecl fielcl given by the integral around the cut exbend-

ing t s =0. This additional f
bra d that the fundamental w

of t x) either does not decaY

clec allY. Our Problem is to
tic behavior of bhe addiLional wave.

t 
uo ,o terms of order [1 +o (tn-le)] we can recluce the

integrals along bhe cut to

-(
H trt - -2icoeik' \ 

tto 113s5*l " + Q(!)Je-"ds
0

by using the circuit relabions for the cylinder funcbions'

We lirsb calculabe the.adcliLional field inside the rod'

The factor e-sz causes the integrancl to clecay rapidly, and

only s values close bo 0 contribute significantly to the

irrLegral. U we introcluce lhe quantily s1 = (kaaJ)-y2 ' we

.u.nibo* as in Ref. l that the functions in the integrand

may be replaced for s= ss by lheir approximations for

| *l ..f provided the condiiions kz >>1, kz >> (ka)2 are satis-

fied. We may therefore substitube the expressions

, i'"4q- attppo(x2orlnc), Q|lT6:--*1*io-*.1 L.

, r''",,1y-,,r\+2-{i,'l+ot",l (29)

S5.rr-----r-Lxiot\;" ) | - 2o, J,

Here

L (t) : 2r,, ]l r -, + (,'- 2r cos 0 f 1)'/' I'

' ,oro

(18)

(22)
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Since x2= -Ziksaz, we get bhe resulb

4iciktln fn ',2r2 
' 

12 ,/t -ie\l ,^ " "?{Op-3 ltrz),ilt+):;d=i|)yt --47f -T2\;" ))"'-T- 
(30)

lvhere A= t/Z'eykaz. A similar mebhod can be used to es-

timat" the additional field in the region kz>>L, kz >> (kr)2

oulside the rod. IIere lgrl <<1, so that we can rvrite

s[-r z - +t+ t(+,*)+ h, ]iil lo(x3tna)' (31)

EvaluaLiag bhe integral using the above procedure, we

conclude thab

ilft--f i." (hu),2,(r 143) r,'++ Ioe"\, (32)

rvhere A, =I/2' erl 4yl<ar, Il can be shorvn lhab near [:he

frequency K1s, lhe addibional field remains appreciable al
significantly grealer disbances from lhe dipole. Since

6! =t/z' 1x2 +2x211t+o 1x2lnx)1, rve musb replace klo - x2 in
Bq. (28) by -2xz close lo lhe transition frequency, after
which the asymptotic behavior of the resulling inbegra'ls

must again be found. We obtain

HG) : - t 

#, | - # +* t(+,"))+ i o G-'), (3s)

II?:-+nz lrtao1r1. (34)

We nole that the additional field decays more slowly as

z- e than the field of bhe outflowing wave, rvhich decays
exponenlially. Neveriheless, at moderate dislances from
lhe dipole sabisfying In(z/a)>>h"2, the outflolving slil wave,

i.e., lhe residue a! the pole (16) for K2s( K( Klsr rna/ cor-
lribute appreciably o.r even dominate the total field near
and inside lhe rod,

6. SPIIERICAL WAVE

We can use bhe siandard method of sleepesl descent [o
calculate the field in bhe far zone outside the region con-
sidered in Sec. 5, In Chis case, the field is regarded as a

sphelical wave tvhose amplitude-phase distributiot't is
described by the componenLs E.p and FIry, where lhe angle

a in the spherical coordinate system (R' g' a) is mea-
sur-ed fromthe z axis. Ib suffices bo evaluate bhe pobenLial

lvf ) 5t sebiing lcR sin2 Xo >>1 and using lhe fact lhaL in Lhe

far region E a=-IIc,t =l<2 sino Wf /.

FlC, 3. Direcrional patrerns for a spherical wave o= l', e= 2,25, x16= 0.46,

xzn=0.215. a) x=0.1< x26, b) x=0.28; c) 0.23: d) 0.35; e) 0.4; f) x=
0.6 > xro,

The polenlial Wf/ is given by an inlegral similar to
(3), and analysis reveals that bhere is a saddle point ab

hs=kcosa. In lhe lirnit kR- @ we can neglect any poles
hi lhat mighb be prescnb near h5 and can even neglec! lhe
residues from these poJ.es rvhen we deform the conlour of
integration inlo the path of steepesl descent, since their
contribution is exponentially srnall. However, ab the bransi-
bion frequency the pole ho=1; 

"oin"'Oes 
wiLh bhe saddle point

hs when a = 0 and lhe rnethod of sLeepesl descent does nob

apply in its usual forrn.

The mebhod of sleepesb descenl gives lhe following ex-
pressions for the fielcl:

D"--ll.- co,rc!sirra[1 f rlr,(a, 9) -[-rlrr(a, o)](e;kttl]l), (35)

rvhere

tl'r(o, ?) :-a:ilrrf

Here we have recalled lhat fol ka ^lV< 1 bhe cylindrical
funclions can be expanded in power series, and that for a

narrow slit Tn6f tQ=[F1)n+1/lnl 1+o1ez).

Analysis of (35) reveals that bhe amplitude and phase of
of lhe spherical wave depend only iveakly on lhe coordinate
g, Away from the lransition frequency, lve have Ot@' (p) =

O (azf n a),{.2(e, cp)=O (o) as a-0 and lhe spherical rvave

vanishes as it approaches the axis of lhe rod. Horvever, lhe
poles near the saddle poinl cannol be neglecled if x =xro and

a -0 or if kR is not sufficiently large. In lhis case, the
rnoclified meLhocl ol steepest clescents'9 musb be used to

estimale the integrals, according to lvhich the contribubion
from a pole is described by an additional probabiliby inte-
gral of complex argumeut.

Calculation of the directional paltern (35) reveals lhab
for x26 <ct < cr 1s Lhcrc exisLs an angle cys,

sirrsao: 1, - t'155-[t f + ';, r,, :1:i;Il], (36)

for which the real parl of lhe dcnonrinator of dr (cv' g)van-
ishes, so bhat Q(e, ?)=sin cve O (lnkasincys). This irnplies
bha[ lhe radialion pabLeru of the spherical rvave conlains a
narrow lobe along lhe direcbion os (Fig. 3), If e is nol
lvithin lhe above inLerval, Lhe lod distorls lhe wave er-nibLed

by the dipol.e only slightly, since a <<1.

?. 11ADIATION RTSISTANCI' AND ENtrliCY DISTNIBUTION
BETWBEN A SPI.IEIIICAL AN]] A SURIIACD WAVE

'I'he radialion resisLance R, which is relaled to lhe
encrgy by V=t/2'I2R, is a me:Lsure of Llte ouLpub polver
efficiency rvhen the CSL is present. Sincc a sphelical rvave

is present inthe sfruchrre for all frecluencies x, lvhile for
x > x19 two additional undanlped slit rvaves are e.xcil.ed and

carry off energy lrom Lhe dipole ih the direclions z** -,
rve have

0, , ( 
"ru,I(:4onf | ,, .. .\; (3?). . ,1ir111, ,)zn

^ c,il^,,.fi,pr': #6 \ \ ,'rll:R'1 5j11 cdarle'

:.'' (38)
-. c | | ,^ ,,./rsrit: 

";tr 
\ \ @,tr;-l E?ili) rdrdp.
00
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slow wave;however, as the frequency decreases, lhere is a

transibion flequency x1i lor which oubflolving rnodes are
generated. ln conLrast lo rvhaL is found for an Lurshielded

dielectric rod, in our case bhe oulflorving waves r-emain
largely undarnped not only for frequencies =4rirbub through-
out a range extending up lo Lhe critical frequency rri. Below
x2i the damping increases rapidJ.y, so bhab Lhe par'lially
shieldcd rod behaves Iilic a ciosed lvaveguicle'

'Ihe quasi-TE66 slil lvave is l,he fundamenlal nrode i-f

the lod is a cylindrical slit line (0 <<1), and bolh of lhe
characLerisLic frequencies (bransilion and crilical) for this
mode are extremely Low. This means in praclice lhat bhe

frequency band for single-mode operation is rvide (Ewo oc-

taves or more), and the geomelric dimensions of lhe Iine
are an order of magnitude srnaller than for a corresponding
TE11-nrode closed rvaveguide. The field of the slil '"vave is
Localized near the slil, which ensures bhal lhe efleclive
dimensions of the iirte are small, and the retardabion is less

tnan{G +TW.
Because of their bandrvidth and the fact thal ouLflorving

waves ale generabed for a wide range of parameLers, cy-
lindrical slil Iines cal be employed as anlennas as rvell 'rs
microrvave circuits. For example, ib has been sugges

that CSLs be used in minialure scanning millimeler-range
slit emillersll wilh a diameter at leasL 4-6 bimes smaller
than for comparable waveguide emitters.

When a CSL is excibed by an elementary source' the

EIvI fielcl in bhe legion z>>kt2 has bhe form of a spherical
wave rvhose direcbional pallern conbains a lobe due to radia-
lion from lhe outflowing slib rvave lvhen x2q< x < x1s. The

near field llor z <<krz) is a superposilion of lhe leal<y or

surface slil tvave and the aclditional lvave, rvhich decays

algebraically. The Ialler appears in additior.r to the eigeu-

rnodes because of the open rvaveguide strucLure.
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FIC, 4. Radiation resiscance vs fre-
quency Paramerer x; 0 (de8), e, ltro,

x26; 1) 1, 2,25, 0.46,0.2?5; 2) 1, 10'

Q,46, 0.42t 3) 10, 2.25' 0.64, 04; 'I)
10, 10, 0.64, 0.5?5.

0.2 0.+ 0.6 0.8 x

We can express R allernalively in lerms of the field

amplilude at lhe diPole

R:--bl t ' Pte//(-) (a' 0' 0)' (39)

bv using a sLanclarcl theorem concerning bhe cotnplex power;

fr"." fr!-) is given by the inbegral in (3)' As poinLed out in

Ref. 1, in orcler to separate oub lhe real part il is con-

venienl bo introcluce a cutinthe complex plane rvhich ex-

bends from bhe branch poinl h=k to 0 along lhe real ulis
ald then ascencls bhe imaginary axis' By deforming lhe

conbour as in Sec. 4, rve reduce lhe integral lo a sum of bhe

resiclues al the poles on bhe real axis plus a loop int€gral

along bhe cut. OnIy the porbion of the inbegral baken along

the inlerval [0, k] of lhe real axis is real and remains

finibe for E=Q, r*e, z-0. trVe note thal Lhe complex poles

(in parLicular, lhe pole lri) do nol conbribube lo (39)when

x ( K1s, since lor our choice of cub lhey lie on lhe ofher

streeb of bhe Riema-nn surface. L'r other words' lhe Iealiy

waves clo not parlicipabe in energy brausporb because lhey

decay cxponentially where they are defined' After a good

deal of calculation, rve Lhus obtain

A

,l?soh :t | ,. ,

n :r -f 71 1 
r'* 11jrSi-)rr (i1' a' 0) 'l Q?tldh' (40)

0

flslir 3 t't-l-:- Ps

.f .,,..'i" r..z '"t-21 
(41)

xl xio rrr -i-\aio- ^ l - " ),

rvhere Ro=2(kb)2/3c is btre radiation resisl'auce of a dipole

in vacuum.

I'igttre 4 shows bhe calculated frecluency-depeuderrce of

lhe radialion resistancc. The curwes show LhaL tlte energy

carried olf by the sptrerical wavc is a m&\imunr ab Lhe

cribical frequency r2s and has a minimum near the beginning

of the inl,erval x2s< K ( K16. For rc > K10 und:rmlled surlace

slil rvr.ves are generated, and Lhe encrg'y thel ttrey carry off

is comparablc bo bhe energy relnovcd by lhe spherical lvave

:urcl ntay even exceed il as bhe flequency increases'

CONCLUSION

lVc lrave thus lound l.hat ab high freqtLerlcics' each cigeu-

nrocle of a plrtially shiclclcd rod behaves as li tLndatnpcd
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