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ABSTRACT 

Active research into nanoscience and nanotechnologies that are available for nano fabrication have lead to considerable 

progress in the understanding of the optical properties of metals on nanometer scale. Here, noble-metal strip-like 

nanostructures are attractive objects of research. Indeed, they can be easily manufactured and serve as building blocks of 

optical nanoantennas and sensors with unique geometry-dependent optical properties. This is because they display 

intensive localized surface-plasmon resonances in the visible and far-infrared ranges that lead to near- and far-field 

enhancement effects. Thanks to surface-plasmon resonances, multi-element finite gratings have attractive properties of 

extraordinarily large reflection, absorption, and transmission, depending on the arrangement of the elementary cell of the 

grating. All these phenomena are greatly influenced by the so-called grating resonances which appear due to periodicity. 

The 2D modeling of electromagnetic wave scattering by thin noble-metal nanosize strips and their finite-periodical 

ensembles arranged in comb-like gratings is considered. Our analysis is carried out using new efficient, convergent and 

accurate method. It is based, first, on the use of the generalized boundary conditions (GBC) valid for a thin and high-

contrast material layer; they allow us to consider only the limit values of the field components and reduce integration 

contour to the collection of corresponding strip median lines. Second, for the building of discrete model of the obtained 

singular integral equations, we use very efficient Nystrom-type algorithm with quadrature formulas of interpolation type. 

We study the SPRs of the finite periodic comb-like strip ensembles versus the incidence angle of the plane 

electromagnetic wave and the strip characteristics; both near-field and far-field properties of the associated surface-

plasmon resonances and especially local field enhancements or focusing effects are analyzed. Moreover, we investigate 

the periodicity-induced properties such as the grating resonances in the context of the development of optimal design 

strategies for efficient multi-strip optical nanoantennas. 
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1. INTRODUCTION  

As active research into nanoscience and nanotechnology has been advancing rapidly in recent years [1-5], various 

methods have been developed to fabricate and theoretically model the optical properties of metals on nanometer scale.  

The interest in these properties is associated with plasmon waves and plasmon resonances appearing on noble-metal 

nanostructures due to negative values of their dielectric functions [6]. They are promising for a variety of applications 

such as biosensing and efficient manipulation of light using the optical antennas in the visible and infrared ranges. Here, 

noble-metal strip-like nanostructures are attractive as fundamental objects, which are easily manufactured and serve as 

building blocks of nanoantennas and nanosensors with unique geometry-dependent optical properties. 

Recently we have proposed a convergent, efficient, and accurate numerical algorithm to simulate electromagnetic 

wave scattering by stand-alone thin material strips and finite multi-strip ensembles [7]. Our mathematical simulation is 
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carried out, first, on the basis of GBCs valid for a thin and high-contrast material layer [8]; they allow us to consider only 

the limit values of the field components and reduce integration contours to the corresponding strip median lines. Second, 

for the building of discrete model of the obtained singular and hyper-singular IEs we use a very efficient Nystrom-type 

numerical algorithm with weighted quadrature formulas of interpolation type. 

 

2. MATHEMATICAL SIMULATION 

2.1 Problem Formulation 

Consider the scattering of the H-polarized plane wave by a two-dimensional optical nanoantenna based on a comb-like 

finite nanostrip grating made of N identical silver strips. The corresponding freestanding geometry is shown in Fig. 1 

 
The strips are assumed to be infinite along the z-axis, have thickness h, width d and form a grating with the period p. 

The silver is characterized with complex-valued permittivity ( )rε λ  obtained via experimental data of [6], where λ  is 

the free-space wavelength. 

In the 2D scattering problem, one has to find a scalar function ( )sc

z
H r
�

 that is the scattered magnetic field z-

component. Here, the total magnetic field is a sum of the incident and scattered fields ( cos sin )( ) ( )ik x y sc

z z
H r e H r

β β− += +
� �

, 

where the latter field can be presented as a sum of single-layer and double-layer potentials 
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Here, 2 /k π λ=  is the free-space wavenumber, (1)

0( , ') ( / 4) ( | ' |)G r r i H k r r= −
� � � �

 is the Green’s function of the 2D 

Helmholtz equation, and unknown functions ( )jv r
�

 and ( ), 1,...,jw r j N=
�

 are the electric and the magnetic surface 

currents (jumps of the tangential components of H and E fields, respectively) induced on the strips i.e. at 

{( , ) : [( 1) / 2, ( 1) / 2], [0, ]}
j

S x y x j p h j p h y d= ∈ − − − + ∈ . 

Exploiting the small thickness of each strip, h λ<< , we assume it to be zero, i.e. we shrink their cross-sections to the 

set of median lines {( , ) : ( 1) , [0, ]}
j

L x y x j p y d= = − ∈ . This enables us to neglect the internal fields inside the strips 

and impose the two-side GBCs at 
1

U :
N

j j
L L==  (see [8] for more mathematical details), 
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Here, the coefficients R and Q are the so-called relative electric and magnetic resistivities (surface resistances),  
 

cot( / 2) / (2 ),
r r

R i kh ε ε=  ( / 2) cot( / 2)r rQ i khε ε=     (4) 
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Figure 1.  Cross-section of a free-standing comb-like finite nanostrip grating of N infinitely long (along z-axis) noble-metal strips. 
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which contain the strip characteristics such as electric thickness kh and relative dielectric function 
r

ε , n
�

 is the unit 

vector normal to the strip grating along the x-axis, and the superscripts ±  denote the limit values of the field at the top 

and bottom faces of the strip, respectively. These GBCs are valid if 1kh�  and | | 1
r

ε �  [7,8].  

2.2 Singular and Hyper-Singular Integral Equations 

By enforcing the GBC (2), (3) and using the properties of the limit values of potentials in (1), we obtain two coupled 

sets of IEs of the second kind for the unknown surface currents ( )
j

w r
�

and ( ),
j

v r
�

 where 
0
,r r L∈
� �

, 
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On changing the variables, ( 1) / 2, ( 1)j j
y d t x j p= + = −  and 

0 0
( 1) / 2, ( 1)s s

o
y d t x s p= + = − , 

0
, [ 1,1]t t ∈ − , and 
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0 0

2 2 2 2 2 2
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js
kd p j s dκ σ= = − , the IEs 

can be rewritten in more detailed form,  
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Note that the current-density functions ( )
j

v t  are finite and non-zero at the endpoints [-1,1]. The other currents ( )
j

w t  

are the functions which behave at the edges as 
1/22

( ) ( )( )1
j j

w t w t t= −� , where ( )
j

w t�  are regular functions tending to finite 

limits at the endpoints. The right-hand parts are known regular functions for all κ and [ 1,1]t ∈ −  given by the following 

formulas, while / :
p

n d p=  
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Here, the kernel functions have the form,  
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The asymptotic behavior of the Hankel functions is (1)

0 ( ) 2 ln(z/2)/H z i π∼  and (1) 2

1 ( ) / ( / ) ln 2 /( )H z z i z i zπ π−∼ , 

0z → , respectively. Therefore it is only if the observation point coincides with the integration point (j = s), that the 

kernel functions are singular.  
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2.3 Nystrom-type Discretization of IEs 

Following [7,9], we isolate the singularities and discretize the resulted sets of IEs using Nystrom-type method with 

two different quadrature rules (but the same discretization order, n) of interpolation type. For the integrals of IEs (8), (9) 

with unknown electric currents ( ), 1,...,
j

v t j N=  we use the Gauss-Legendre quadrature formulas with nodes in the nulls 

of Legendre polynomials ( ) 0,
n j

P τ =  1,...,j n=  for the singular and regular parts, respectively, 
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where 
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and ( )
l

L t  is the Legendre function of the l-th order.  

For the integrals of IEs (7), (8) with unknown magnetic currents ( ), 1,...,
j

w t j N=�  we use the Chebyshev quadrature 

formulas, with the weight 2 1/2(1 )t− , with nodes in the nulls of Chebyshev polynomials of the second kind, 

cos( / )
j

t j nπ= , 1,...,j n= . These formulas have the following form for the hyper-singular, log-singular and regular 

integrals meet in our analysis, 
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where coefficients 
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α and 
ik

β are given by formulas, 
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Here, ( , ), ( , )
v w

R t t R t t
0 0

can be arbitrary regular functions on the interval [-1,1], and ( )
l

T t  is the Chebyshev polynomial 

of the second kind. 

As the collocation nodes, we choose the corresponding discretization nodes 
0

{ }
i

τ  for the first set of IEs, and 
0

{ }
j

t  for 

the second one, respectively. 

Applying the above presented quadrature formulas, we arrive at a set of matrix equations of the orders 2nN for the 

values ( )
j k

v τ  and ( )
j k

w t� , where j = 1,...,N and k = 1,…,n, 
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and the matrix coefficients are given by formulas,  
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while lkδ  is the Kronecker delta, and regular functions 
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These finite-size matrix equations represent discrete model of our initial IEs (5) and (6). On solving them numerically 

we obtain approximate solution of IEs in the form of interpolation polynomials of the order n for each of the surface 

current densities. 

The chosen quadrature formulas ensure rapid convergence of numerical solutions to the accurate ones if discretization 

order n → ∞ . Conservative estimation gives the rates of convergence as (1 / )O n , although the actual rate is always 

faster [7,9]. 

3. NUMERICAL RESULTS AND DISCUSSION 

In this paper we focus specifically on the details of the mathematical simulation of the comb-like nanostrip gratings. 

Besides of that, in this section we present some preliminary results on the plasmon-type and grating-type resonance 

effects of the associated comb-like nanostrip gratings and their dependence on the number of strips N. 

To characterize the optical properties of considered gratings, we have computed the normalized total scattering cross-

section (TSCS) and absorption cross-section (ACS) as a function of the wavelength in the visible range.  

In Fig. 2, the normalized by 2Nd scattering and absorption spectra are presented for the single strip (N = 1) under the 

normal incidence (β = 0) and for the gratings of N = 2,5,10 and 20 identical silver strips of the width d = 300 nm, 

thickness h = 50 and period p = 500 nm. Note that for the gratings the angle β = 0 corresponds to the grazing incidence 

with respect to the plane of the grating. 

As one can see, if the number of the strips gets larger, the surface plasmon resonances deform and became less 

pronounced in contrast to the coplanar silver strip gratings, while the grating resonances near λ = p become sharper. 
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Figure 2.  Normalized TSCS (a) and ACS (b) as a function of the wavelength for N = 1,2,5,10 and 20 silver strips of the width d = 300 

nm, thickness h = 10 nm and period p = 500 nm; the discretization order is n = 20 ( = 0). 
 

To obtain better understanding of the resonance phenomena, we have investigated optical response of the two-strip 

resonator versus the strip width under the on-strip incidence. As one can see from Fig. 3 the strip width significantly affects 

the position of the plasmon resonances. Thus, wider strips lead to the red-shifting of the plasmon resonances, but the Q-

factor keeps almost the same value.  
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Figure 3.  Normalized TSCS (a) and ACS (b) as a function of the wavelength for N = 2 strips of the thickness h = 20 nm and p = 100 

nm for the different values of the width d = 100, 150, 200 and 250 under the edge-on ( = 0) incident H-polarized plane wave. 

 

In Fig. 4 we present the total near-field and the scattered far-field patterns for the two-strip resonator of d = 250 nm, h = 20 

nm and p = 100 nm at three resonance wavelengths = 377.64 nm (a) and = 385.75 (b) and = 868.01 (c). Near-field 

distribution of such configuration shows strong interaction of light via the multiple reflections between the strips. 
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Figure 4.  Scattered far-field and total magnetic near-field pattern at the wavelengths  = 377.64 nm (a),  = 385.75 nm (b) and  = 868.01 

nm (c) for a two-strip resonator (N = 2) of d = 250 nm, h = 20 nm and p = 100 nm ( = 0). 
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In the case of the grating consisting of dozens or even hundreds of strips, new effects appear induced by the existence 

of such a periodicity. In particular, the spectra of the scattering and absorption demonstrate the gradual build-up of the 

grating or lattice resonances near to λG = p/m, m = 1,2… (at normal incidence). This phenomena is explained by the 

specific poles of the field as a function of the wavelength that exist in the vicinities of Rayleigh anomalies of 

corresponding limit case of the infinite gratings. 

In Fig. 5, the plots of the normalized TSCS and ACS versus the wavelength exhibit sharp grating resonances close to 

λG = p for the grating of as little number as of N = 20 strips, in contrast to the coplanar strip gratings where similar 

grating resonance is observed only for the grating of N = 100 strips [9]. It should be noted that if the number of elements 

in a finite grating gets larger, then the grating resonances become sharper and approach their limit forms valid for infinite 

gratings. 
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Figure. 5.  Normalized TSCS (a) and ACS (b) as a function of the wavelength for N = 20 silver strips of d = 300 nm and h = 50 nm for 

the different values of the period p = 350, 400, 450, 500, 550, 600 and 650 under the normally (β = π/2) incident H-polarized plane 

wave. 
 

As can be seen from Fig. 6 (b), the near-field pattern for the grating of N = 20 strips of d = 300 nm, h = 50 and p = 350 

nm at the grating resonance wavelength λG = 373.55 nm demonstrates field enhancement between strips with maximum 

magnitude of 10.4. This is in contrast to the near-field pattern in the plasmon resonance seen in Fig. 6 (a). 
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Figure. 6.  Total magnetic near-field pattern for the grating of N = 20, d = 300 nm, h = 50 nm and p = 350 nm at the plasmon 

resonance wavelength λ = 344.6 nm (a) and at the grating resonance wavelength λ = 373.55 nm (b). 
 

4. CONCLUSIONS 

We have presented an efficient numerical method and the numerical results related to the accurate modeling of 2D 

electromagnetic wave scattering and absorption by optical nanoantennas shaped as comb-like metal strip gratings. The 

proposed Nystrom-type numerical analysis has been based on the median-line integral equations obtained using with the 

generalized boundary conditions and also on the quadrature formulas of interpolation type. Proposed algorithm is 

numerically efficient and guarantees fast convergence and controlled accuracy of computations. It allows simulating 
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fairly rapidly the scatterers consisting even of hundreds of nanosize noble-metal strips. In particular, we have 

investigated the interplay between the surface plasmon resonances and the grating or lattice resonances in the vicinities 

of the wavelengths of Rayleigh anomalies (i.e. caused by the periodicity), which depend on the number of strips in the 

grating. 
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