
2a). However, at 80 = 20 ~ the dimensions of the focal region at k0b also comprise an angle 
of 20 ~ , so that practically all the energy of the focused wave is reflected in the reverse 
direction (Fig. 2b). Calculation of the modulus of the vector P shows that at k0b = 5, r = 
2.57, 8 o = 20 ~ in the focus ahead of the screen IP] = 3, while beyond the screen ~P] = 0.03. 
It is obvious that the amplitude of the wave reflected from the spherical screen will be 
maximum in the case where the screen overlaps the "focal" region. Increase in screen size 
may lead to decrease in the reflected wave amplitude. This will occur in the case where 
the screen overlaps regions in which the flux of the vector P is directed within the sphere~ 

Comparison of the results presented above with characteristics of the scattered field 
in the scatterer far zone makes possible explicit physical interpretation, for example, ex- 
planation of the effect of significant increase in the radar section of a scatterer [5]. 
One can also explain the existence of an optimum (for fixed k0 b value) screen size, at which 
the reflected wave amplitude reaches its maximum. 
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ELECTRODYNAMIC MODELING OF OPEN RESONATORS WITH DIFFRACTION 

GRATINGS 

N. B. Veremei and A. I. Nosich UDC 538.574 6 

The problem of excitation of open resonators (OR), formed by a cylindrical 
mirror and different periodic gratings, by a fixed electromagnetic field is 
solved. The resonance properties of cylindrical or with a dense grating are 
studied in detail. 

In this paper the problem of excitation of an open resonator (OR), consisting of a per- 
iodic grating and an open cylindrical screen, by a given electromagnetic field is solved. 
The problem is reduced to infinite systems of linear algebraic equations (SLAE) of the sec- 
ond Fredholm type. 

I. Formulation of the Problem. The two-dimensional OR, formed by an ideally conduct- 
ing cylindrical mirror consisting of part of a circular cylindrical with angular width 2(~ - 
8 s) and a radius of curvature a and a periodic diffraction grating with period Z, placed at 
a distance b from the axis of the cylinder (Fig. i), is excited by an H-polarized plane wave, 
arriving from the upper half-space. We denote by Hz i the component of the magnetic field 
of the wave parallel to the generatrix of the cylindrical: 

H~(x, g) =exp[ik(cos ~x--sin ~g)], 0 ~ .  (i) 

We shall represent the total field in the OR in the form 
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Fig. i 

.,v~m (x, y) = HJ(x, y) + /4~  (x, y) + m?(x, y). (z) 

Here HzRi is the field of the plane wave reflected by the grating [i]; HzR is the component 
of the magnetic field, scattered by the structure and satisfying: l)Helmholtz's equation 
outside the surface of the mirror L S and the elements of the grating LR; 2) the Neumann 
boundary condition on the surface of the mirror 

o-~ H~ (x, y) + Hf (x, y) + Hf, (x, y) ~ 

3) the system of boundary conditions in the region of the grating [-b - 2p ~ y ~ -b], which 
includes the boundary conditions on the surface of the conductors; 4) the condition that the 
energy in an arbitrary bounded region of the (r, ~) plane is bounded; and, 5) the condition 
that there are no arriving waves as r + =. These requirements ensure that the boundary- 
value problem is unique. 

In the absence of the grating the field scattered by the cylindrical screen can be rep- 
resented as the potential of a double layer [2]: 

Is 0 Oi(k ' r, rs)dls ,  & (r, ~) = ~ (rs) ~ns ( 4 ) 

where 

0 ~ (k, r,  r s )  i_ ?tin k ! r rs  1) (5) 
= 4  o (  - -  �9 

The field scattered by the cylinder in the presence of a diffraction grating is also 
best represented by an analogous integral transformation whose kernel is a derivative of the 
Green's function of the space containing the diffracton grating: 

Here G(k,r , r S) is the sum 

f .~ ,', ,' Wls. 
a/~s 

LS 

(6) 

O(k, r, rs) = O~(k, r, rs) + Oi(k, r, rs), (7)  

OR(k, r,rs) is a function that must be added to the function G~(k,r, rs) in order to satisfy 
the boundary conditions in the region of the grating [3]. 

Using the representation of the function ff(ot)(k[r- rs[) in the form of a Sommerfeld in- 
tegral the function Gi(k,r, rs) can be written in the form of a Fourier integral: 

O'(k,r,  rs) =~ , g exp{ik[h(x--xs)+glb ' --Ysl]}  dh, (8) 

- - o 0  

where g = s h 2, Img > 0 as h + +~. 
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We shall seek the function Ga(k,r, rs) in the form 

[ F(x,y; h) exp(it~hx) dh. i 
0 ~ (!~, r, rs) = ~ ~- ( 9 ) 

Because the  i n t e g r a l  t ransforms (8) and (9) a re  l i n e a r  the  f u n c t i o n  F(x, y; h) can be 
regarded as the response of the grating to the incident plane wave: 

tI~ z (x, !/) =A~ Ys; h) exp(ikhx -- ikgy), 

1 
A ~ (Xs, Ys; h) = ~- exp (--ikhxs+ ikgys). 

The integrand in (9) is periodic in x whose period ~ equals the period of the grating, and 
satisfies Helmholtz's equation and the boundary conditions in the region of the grating. 

Expanding F(x, y; h) in a Floquet series and taking into account the condition that 

there are no arriving waves we obtain 

.~ a.th) exp[ig.(y+b)] exp t--~-x , y > - - b  

F(x'y;h)~A~ ( nk ) ' (10) 
- b.(h) exp[--ign(y+b+2p)] exp i . ~ x  , y<--b--2p 

where gn = 71 - hn 2, h n = h + n/K, < =  Ix; and Reg n > 0 for Reg n = 0, Img n > 0, a n and b n 
are the amplitudes of the spatial harmonics of the Floquet field scattered by the grating 

excited by a plane wave with unit amplitude. 

Then 

~ {a~(h) exp[ig~(y+b)k] I exp(ih~kx) dh. t ,4~ ys; h) X OR(k,r, r s ) = ~ .  .=-= bn(h) exp[--ign(y+b+fp)k],| ( l l )  
- -  r  

The unknown coefficients a n and b n for fixed parameter h are determined by the currents 

induced on the elements of the grating. 

Using the Jacobi-Anger formula 

exp (ix cos T) = ~, i~fn (x) exp (in~), 
n ~ - - o o  

we represent HR(r, ~ ) in the form 

IVf(r, ~)a-~ [ ~(rs) (-- i)pJp (krs) exp[ip(cps+a)] • 
L S - ~  p- , - -oo 

~176 {::~;}exp(ignkb) exp[im(cp-+~n)], y>--b } (12 
/" ~ exp[--ig.k(b+2p)] exp[im(q~--cz.)], y<--b --2p 

f I ,>-} • imJ.~d/zclis ~ - ~  ~(rs)'< ~, exp[ im(~--~s) ]  dis, 
m='--=lH~)'(krs)Jrn( kr)' r < a 

LS 

where r S = xscosa, ~S = arctg(YS/XS), sin~n = -]gn" 

In our case for a circular cylinder the function ~(rs)-----~(q~s). Extended by zero values 
to the interval corresponding to the slit on L S it is a periodic function of ~S with.period 
2~. We expanded in a Fourier series 

F(,~s) ---- 2 ~]  F~exp (in ~?s), (13 
i~ka 

tic--CO 

and replace in (12) the contour of integration L S by a circle. Using the orthogonality of 
the exponentials we obtain the Fourier series for determining HzR(r, ~) in the local coor- 
dinates (r, ~ ) tied to the cylindrical mirror: 
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where 

I '  / - f i t )  r 
_ ~ --m, exp (imp), H~(r,.~) =I~ i~I.~(kr) exp(imcp)G~'t - Pm H~i, jrn, r ~  

WI ~ I'n~ - - 0 o  

(14) 

@m ----- S e-~m~ an(h) exp(ig,,kb) exp(iph~k) dh. 
- - o 0  I t ~ - -  c:D 

Making (14) satisfy the system of boundary conditions on the screen we obtain a system 
of p a i r e d  summation equa t ions :  

~j '  H~:,'e,.~= ~ --i"J'~e~",{e'"" + Off + ~, ap(cosa) exp[ina,(cosa)lexp[igp(cosa)leb]}, (15) 

Inverting the static part of the operator of Eqs. (15) by the method of the Riemann- 
Hilbert problem [2, 3] reduces them to an infinite SLAE of the second kind: 

where 

~m= ~ (AS~+ Rs . . . . .  A,.~) ~ + B m ,  re=O, +1, 
n 

A%~ = ~ r ,~ ,  

A~= Inl +i~(~a) 2 ]'~ Hi')', 

B,n=i~(ka) 2 ~ in ]n TmnX {e i ~  =- ~ as(cos a) X exp[ikO(sin as+sin r a)]}. 

(16) 

The values of the coefficients Tmn are presented in [2]. 

The system of linear algebraic equations of the second kind obtained above can be solved 
by the method of reduction, and thus the electrodynamic characteristics of the OR in the me- 
dium-waveiength and short-wavelength (so-called "strongly resonance") regions can be obtained. 

The results of the numerical calculations performed can serve as an illustration of the 
effectiveness of the proposed model. 

2. Approximate Solution of the Problem for a Dense Ribbon Grating. In finding the 
Green's function of a space with a periodic grating there arises the problem of diffraction 
of a plane wave with unit amplitude, incident at an arbitrary angle, by this grating. The 
result of the solution of this problem are the values of the amplitudes of the propagating 
and surface Floquet harmonics. Problems of this kind have been solved for the following 
periodic gratings: ribbon, comb, and echelon [4]. As an example we shall choose the sim- 
plest form of a periodic grating - an infinite ribbon grating; the electrodynamic properties 
of this grating were investigated in [4]. The calculations were performed for the problem 
of excitation of an OR with a grating consisting of flat, infinitely thin ideally conducting 
ribbons of width D placed in the plane y = -b with a spacing of ~. Such a periodic grating 
permits modeling a half-transmitting (in the limiting case an ideally reflecting) plane 
placed in the near field of a cylindrical screen. 

The calculations were performed in the region of values of the wave parameter </2~ 
0.3 based on the Lamb approximation for the complex amplitudes of the harmonics of the field 
scattered by the grating with accuracy up to terms of order 0(< 2 ) for an arbitrary space 
factor of the grating 0 ~ D/~ ~ i [3]: 
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Fig. 2 

=O (17) a 0 ( h ) = - - b 0 ( h ) ~  ixQg , Q=--21ncos  ... , a n ( h ) = b n ( h ) = 0  n=~0. 
1 - i z Q g  21 

Using (17)  and c a l c u l a t i n g  t h e  i n t e g r a l s  ove r  h in  ( 7 ) - ( 9 )  by t h e  s a d d l e - p o i n t  method 
in  t h e  l i m i t  r ~ ~ we o b t a i n  an a p p r o x i m a t e  e x p r e s s i o n  f o r  t h e  d i r e c t i o n a l  p a t t e r n  (DP) o f  
t he  f i e l d  s c a t t e r e d  in  t h e  form of  a c y l i n d r i c a l  wave in  t h e  f a r  zone 

(18) 
~ ~ ~ ' ~  7 ~( i~"[e tn~ [ao(cos~)exp(2 ikbs in~- - in~ ,  y > - - b / ]  

�9 ~ =  J k a . - - .  + . 
. , ,  z _ J r . . .  . [ [ - -ao(cos~)e '"* ,  y<--b]J  

n 

To invest igate  the in tegral  charac te r i s t i c s  of the electromagnetic f i e ld  in the OR we 
introduce a quantity that  is  analogous to the t o t a l  scat ter ing cross section o H for a screen 
placed in free space: 

2, 

= ~  [I T(~)I'a?. (19) 4a 2~ka ,. 
o 

Calculation of OH(ka) showed that when a half-transmitting or ideally reflecting plane 
is reduced into the region of the near field of the cylindrical screen two series of reson- 
ances are observed in the cross section (Fig. 2). Resonances of the first type (for a half- 
transmitting plane: ka = 0.9, 3~ ..o; for an ideally reflecting plane: ka = 0.5, 3.3, 
...) are explained by the excitation of characteristic oscillations of the cylindrical mirror~ 
The resonator formed by the cylindrical mirror and the half-transmitting plane is equivalent 
to a system of two strongly interacting cylindrical screens excited in phase [5]. As the 
reflection coefficient of the plane and the aperture angle of the slit of the cylinder are 
varied the maxima of o H shift relative to the maxima of o H for the cylinder itself, since 
the coupling between the screen and its mirror image changes. The calculations showed that 
OH,me x shift into the long-wavelength region of the parameter ka as the reflection coeffi- 
cient of the plane increases and into the short-wavelength region as the aperture angle of 
the slit of the mirror decreases. Tilting the screen relative to the normal to the grating 
by angles of ~I0 ~ does not change the position of the resonances in o H in the structure and 
has no effect on the absolute values of OH,max; this indicates that this system is insensi- 
tive to tilting of the mirror. 

Resonances of the second type (for a half-transmitting plane: ka = 1.8, 2.8, ...; for 
an ideally reflecting plane: ka = 1.6, 2.6, ...) arise owing to rereflection of the electro- 
magnetic energy in the "screen-plane" space. For this reason their position and absolute 
magnitude depend on the method employed to excite the OR. 

Figure 3 shows the dynamics of the change in the structure of the electromagnetic field 
in the near zone of the cylindrical mirror when ideally reflecting or a half-transmitting 
plane is inserted into this zone. Concentration of regions with maximum amplitudes of the 
field near the surface of the screen and in the interior cavity of the OR is characteristic 

170 



II Ii 

i iiiiii!iii~ ~�84 ~ 

~. ~, ,! iii �84184184 

!~'!i~i/. .... ~- ~.~ ~ ~,I 

N 

,~i �84 k~ ~ii 

r162 

I I I 

171 



for the structure of fields in resonances of <H of the first type the field virtually does 
not enter into the region of the OR (Fig. 3g). 

The problem of excitation of a two-dimensional open resonator consisting of a cylindri- 
cal mirror and an infinite diffraction grating by an H-polarized field was solved under 
the condition that the solution of the problem of scattering of an arbitrary plane wave with 
unit amplitude by the given grating is known. 

The resonances in the properties of the OR, one mirror of which consists of an open 
cylinder while the other is a dense ribbon grating modeling a half-transmitting (in the 
limiting case - ideally reflecting) plane placed in the region of the near field of the 
cylindrical mirror, were analyzed with the help of a computer. The calculations permitted 
determining the values of the parameters of such an electrodynamic structure for which it 
can be effectively employed as an OR or a screening device. 
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SHORT-WAVELENGTH ASYMPTOTIC BEHAVIOR OF THE HIGHER-ORDER 

MODES OF A SMOOTHLY IRREGULAR WAVEGUIDE 

A. D. Avdeev UDC 621.372.8 

A modification of the method of smooth perturbations, extending Bri!louin's 
concept, is proposed. 

One of the effective methods for constructing asymptotic expressions for the higher 
order modes of flat, smoothly irregular, multimode waveguides with reflecting walls is the 
method of smooth perturbations developed by Popov [i, 2]. In this method, which extends 
Brillouin's concept, the field of the normal wave is represented by a superposition of two 
quasiplane waves, and the problem reduces to integrating the eikonal and transfer equations, 
whose solutions are constructed in the form of expansions in the small smoothness parameter 
characterizing the slowness of the variation of the properties of the waveguide. 

In [i, 2] expressions were found by the method of smooth perturbations for the fields 
of higher-order modes with an error in the phase on the irregular section proportional to 
the cube of the smoothness parameter. But to describe the exponentially small effects of 
the transformation of modes on analytical junctions [2] in this method one must employ 
artificial devices [3]. 

In this paper, whose basic ideas were formulated in [4], a modification of the method 
of smooth perturbations, which differs from Popov's method by the system of curviiinear 
coordinates employed and by the method employed to construct the solutions of the eikonal 
equations, making it possible to describe easily exponentially small effects of mode trans- 
formation, is studied. An expression is derived for the field of the propagating higher 
order modes with an error in the phase proportional to the fifth power of the smoothness 
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