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Optical fields of the lowest modes in a uniformly
active thin subwavelength spiral microcavity
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A numerical study is presented of several lowest in frequency modes in a spiral microlaser. The modes in an
arbitrarily shaped active cavity are considered as solutions to the two-dimensional eigenproblem for the
Muller boundary-integral equations. After discretization using the Nyström-type algorithm, the eigenvalues
are found in terms of frequency and material-gain threshold. © 2009 Optical Society of America
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A serious drawback of circular microdisk lasers is the
low directionality of light emission [1]. The improve-
ment of directionality needs a distortion of cavity
shape from the circle. Here, a promising device is the
spiral microcavity laser [2–5]; however there is still
no engineering rule to follow in its design. An accu-
rate simulation might produce such a rule; however,
this is an extremely challenging cavity shape because
it combines two different scales: smooth deviation of
spiral from the large-radius circle and a small, albeit
abrupt, step. This makes the popular “billiard
theory” impractical, and hence a full-wave numerical
study is mandatory. Such a study can be based on the
boundary-integral-equation (BIE) techniques; how-
ever, in this case the way of handling the cavity con-
tour becomes crucial, a point that is not always real-
ized by researchers. Additionally, some forms of BIEs
like those used in [6–8] are contaminated with false
eigenvalues [9]. This makes them unsuitable for the
analysis of high-Q whispering gallery like modes.

In this Letter, we analyze the modes in a uniformly
active spiral-shaped two-dimensional (2D) dielectric
microcavity. Various recent trends in the linear opti-
cal modeling of microlasers were reviewed in [1]. Di-
rect characterization of lasing can be achieved by in-
troducing the macroscopic gain � as the active
imaginary part of the complex-valued refractive in-
dex �i in the active region (if the time dependence is
e−i�t, then �i=�i− i�, where �i ,��0) and looking for
the discrete real values of k and � as eigenvalues (k
=� /c, with c being the light velocity). Such a lasing
eigenvalue problem has been applied to the one-
dimensional analysis of vertical-cavity surface-
emitting lasers [10] and 2D analyses of single [11]
and more complicated [12–14] microdisk lasers; for a
discussion on bridging the gap between passive
(pump off) and active (pump on) cavities, see [14].

In two dimensions, two polarizations can be

treated separately, with the aid of either the Ez or the
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Hz field component. The problem is reduced to two
coupled equations known as Muller’s BIEs,

��r�� + �
L

A�r�,r�����r���dl� − 2�e��i + �e�−1

��LB�r�,r���	�r���dl� = 0, r� � L, �1�

	�r�� + �
L

C�r�,r�����r���dl� − 2�e��i + �e�−1

��LD�r�,r���	�r���dl� = 0, �2�

where ��r�� and 2�e	�r�� / ��i+�e� are the limit values of
the field function and its normal derivative, respec-

Fig. 1. (Color online) Relief of the absolute value of the de-
terminant in the plane �ka ,��: d=2.0a, 
=� /100, �i=2.63,

�e=1, number of knots is N=100.

2009 Optical Society of America



3774 OPTICS LETTERS / Vol. 34, No. 24 / December 15, 2009
tively, if approaching the boundary L from inside;
�i,e=�i,e

−1 (H polarization) or �i,e=1 (E polarization),
with �e=1; dl� is the elementary arc along L; and the
kernels A, B, C, and D are the combinations of the
uniform-media Green’s functions Gi,e�R�= �i /4�H0

�1�

��k�i,eR�, where R= �r� −r�� �, and their first and second
derivatives [15].

Together, Eqs. (1) and (2) form a Fredholm second-
kind operator equation that guarantees the conver-
gence and the controlled accuracy of numerical solu-
tions. Additionally, they are free from false zero-
threshold eigenvalues that are met for non-Muller-
type BIEs, such as those used in [6–8]. Unlike [15],
where integral Eqs. (1) and (2) were projected to the
trigonometric polynomials, here we build a discrete
model using the Nyström method. We separate the
logarithmic parts from the kernels A and D and ap-
proximate the integrals with two different quadra-
ture rules for the regular and singular parts using an
equidistant set of knots (see [[16], p. 67]). Proper han-
dling of kernel functions leads to convergent and ef-

Fig. 2. (Color online) Dependences of (a) lasing frequen-
cies and (b) thresholds of two modes of the H1,1

h,l doublet on
the step size, 
=� /100, �i=2.63, �e=1, and N=100.
ficient algorithms [17]. We obtain a determinantal
equation for eigenvalues and use a secant-type itera-
tive method [8] to find them numerically.

To consider a spiral-shaped 2D microcavity (Figs. 1
and 2), we characterize its boundary with a continu-
ous function proposed in [18]: L= �r�t�cos t ,r�t�sin t�,

Fig. 3. (Color online) Near- and far-field patterns for the
spiral-cavity modes. (a),(b) H0,1, ka=0.82, �=0.35; (c),(d)
H1,1

h , ka=1.32, �=0.28; (e),(f) H1,1
l , ka=1.29, �=0.26; (g),(h)

H2,1
l , ka=1.69, �=0.18; (i),(j) H2,1

h , ka=1.70, �=0.21. Other
parameters are d=0.3a, 
=� /100, �i=2.63, �e=1, and
N=50.
with
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r�t� = �
1 − �/4���2� − 
�/
t − �/
2t2 − �	, t � �0,
�

1 + �/4���2� − 
�/
�2� − t� − �/
2�2� − t�2 + �	, t � �2� − 
,2�	

1 + �/4�t, t � �
,2� − 
	

 . �3�
Here, a is the spiral radius, �=d /a is the normalized
spiral step size, and 
 is the step tilt angle from the x
axis. Note that the second derivative of Eq. (3) has fi-
nite jumps at t=
 and 2�−
. This limits the accu-
racy assessable within reasonable time to several
digits if ka
10.

The initial guesses for the search of eigenvalues
are found from the study of the determinant as a
function of ka and �. A typical example of such a
function is presented in Fig. 1 and shows the split-
ting of modes owing to the loss of circular symmetry.
Except for the “monopole” mode H0,1, all other modes
form doublets with higher and lower thresholds,
Hm,n

h,l , because they originate from the twice-
degenerate modes of a circular cavity. Besides, if the
step size is increased the Hm,1

l -mode threshold de-
creases monotonically (Fig. 2). The corresponding
near- and far-field patterns are displayed in Fig. 3.
They demonstrate the effect of a small step �d
=0.3a� on the five lowest-frequency modes of a sub-
wavelength cavity. Although the lowest modes do not
have whispering gallery mode (WGM) properties and
thus possess high thresholds, they can be interesting
because a reduction in the threshold can be achieved
by collecting the cavities into a cyclic photonic mol-
ecule [13]. We emphasize that, in contrast to conven-
tional wisdom, the modes in the spiral cavity never
resemble any sort of “clockwise” and “anticlockwise”
waves traveling along the rim. Instead, they are al-
ways the standing waves, and the same should obvi-
ously be true for the higher-index modes, which dis-
play WGM features.
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