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Threshold reduction in a cyclic photonic molecule
laser composed of identical microdisks with
whispering-gallery modes
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Lasing modes in cyclic photonic molecules (CPMs) composed of several identical thin semiconductor micro-
disks in free space are studied in a linear approximation. Maxwell’s equations with exact boundary condi-
tions and the radiation condition at infinity are considered as a specific eigenvalue problem that enables one
to find natural frequencies and threshold gains. It is demonstrated that careful tuning of the distance be-
tween the disks in CPMs is able to drastically reduce the lasing thresholds of the whispering-gallery modes
having small azimuth indices. © 2006 Optical Society of America
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Semiconductor microdisks equipped with quantum
wells and quantum dots are being intensively inves-
tigated now due to their fascinating lasing properties
and their possible applications in optoelectronic cir-
cuits that enable large-scale integration. The main
features of these lasers are periodically spaced fre-
quencies of lasing, very low thresholds, and predomi-
nantly in-plane light emission. For applications,
high-performance cavities with ultralow threshold
and directive emission are desirable. Recently, cavity
structures more complex than those with a single mi-
crocavity have been proposed to enhance the light
output as a result of optical-field coupling. Photonic
molecules (PMs) composed of circular, linear, and
square arrays of microrings, microdisks, and micro-
spheres have been reported, and optical whispering-
gallery (WG) mode splitting into multiplets of “super-
modes” with closely spaced frequencies has been
detected.™

Our goal is the accurate study of the lasing modes
of the cyclic PMs (CPMs) of optically coupled micro-
disks in a linear approximation. To this end, we will
use the lasing eigenvalue problem (LEP), specifically
tailored to extract not only the lasing frequencies but
also the corresponding threshold gains from the lin-
ear field equations.® We have already applied the
LEP to one-disk lasers with radially nonuniform
gain7 and to two-disk PM lasers with uniformly and
selectively activated disks.®

Suppose that a CPM is composed of M identical mi-
crodisk cavities located in the same plane in free
space with their centers in the vortices of a regular
polygon (Fig. 1). Each disk has thickness d, radius a,
and real-valued refractive index «, and the distance
between the adjacent disks is w. Time dependence is
implied as e, and the free-space wavenumber is
k=w/c=2m/\, where \ is the wavelength. If d is only
a fraction of \, the 3D optical field problem can be re-
duced with the effective index method® to a 2D one in
the disks’ plane.
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Then, two different polarizations can be treated
separately with the aid of a function U, which is ei-
ther the E, or H, field component. The LEP state-
ment implies that U must satisfy the 2D Helmholtz
equation, where inside the disks the bulk refractive
index « is replaced with the complex-valued param-
eter v=a.4—17y, otherwise a=1. Here y>0 is the ma-
terial gain, which is assumed to be uniform across
the disks. At the disk rims the continuity conditions
for the tangential field components hold, and the
Sommerfeld radiation condition is imposed at infin-
ity. We seek the eigenvalues as pairs of real-valued
dimensionless parameters, («,vy), where k=ka is the
normalized frequency. Note that the gain per unit
length (the traditional quantity in the Fabry—Perot
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Fig. 1. Threshold gains versus the relative rim-to-rim dis-
tance for the H,-polarized lasing supermodes in PMs of the
(H,)3,1 type of the maximally antisymmetric field class. M
is a number of microdisks in the PM. The straight line is
the threshold of the corresponding mode in a single cavity.
The inset shows the near-field pattern at the distance pro-
viding the minimum threshold of the supermode in the
PMs of six disk cavities.
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Fig. 2. Same as in Fig. 1 for the lasing supermodes of the
(H)51 type.

laser cavities measured in inverse centimeters) can
be obtained as g=Fk7.

A CPM of M microdisks has M-fold symmetry.
Therefore all natural modes split into 2M classes ac-
cording to parity with respect to the symmetry lines.
The circular boundaries of the cavities enable effi-
cient use of the method of separation of variables. In
line with the method, we expand the field function in-
side each cavity in terms of angular functions. In free
space the field is assumed to be a superposition of
similar expansions generated by all resonators and
satisfying the radiation condition at infinity. After ap-
plying the boundary conditions, using the addition
theorem for cylindrical functions, and satisfying the
requirements of symmetry or antisymmetry, we ob-
tain the infinite matrix equations for all symmetry
classes. Any of them can be written as [[+G(k,y)]X
=0, where X={xm}2=(0)1 is the vector of expansion
coefficients, I is the identity operator, and
G={G,,lp}f,';’p:(0)1 is the so-called compact operator.
Therefore the equations obtained are the second kind
Fredholm ones. Then the search for the LEP eigen-
values is reduced to finding zeros of the determinants
of truncated equations, Det™)[I+G(«k,vy)]=0, and con-
vergence to the exact eigenvalues of infinite matrices
is guaranteed when the truncation number N is in-
creased. We have computed the eigenpairs (k,v),
which are lasing frequencies and thresholds, with a
two-parameter secant-type iterative method.” In
computations we kept the resulting accuracy of com-
putations at the level of 10~ and assumed a GaAs—
InP system, A=1.55 nm, «=3.374, and d=0.2 um, so
that a.4=2.63 (this value may be somewhat overesti-
mated for the modes with small azimuth indices).

In Figs. 1-4 we present the dependences of the las-
ing thresholds on the relative rim-to-rim distance,
w/a, for the supermodes (H,),, ; with m=3,5,7,10 of
the maximally antisymmetric field class in CPMs of
4, 5, and 6 microdisks. Here the first index corre-
sponds to the number of field variations along the el-
ementary disk rim, and the second is the same along
the radius. As seen, if the separation is small (w
<0.2a), then the thresholds of the maximally anti-

symmetric WG supermodes grow when they are
brought together. However, if the separation is com-
parable to the disk radius, the thresholds can drop to
significantly lower values than for those of an iso-
lated disk. Such a reduction of threshold is observed
in narrow bands, depends on m, and needs fine tun-
ing of separation w. Increasing the number of micro-
disks in a CPM leads to a further lowering of the
minimum values of thresholds, although in a nar-
rower band of w values. A very large separation (w
>3) reduces the radiative coupling, and thresholds
oscillate close to their values for the stand-alone cav-
ity.

For the WG supermodes of smaller azimuth indi-
ces, such as m=3,5, smaller threshold reductions
relative to the one-disk value are observed in several
bands of the w/a variation. This is explained by weak
field confinement in each disk. If the index is too
large, say m=10, then the field confinement is very
strong, and threshold reductions are again small and
found in several bands of the w/a variation. Only for
the supermodes of intermediate indices, say m="7 in
our case, one can see a single band of the most sig-
nificant threshold reduction.
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Fig. 3. Same as in Figs. 1 and 2 for the lasing supermodes
of the (H,)7 ; type.
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Fig. 4. Same as in Figs. 1-3 for the lasing supermodes of
the (H)10,1 type.
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Fig. 5. Same as in Fig. 3 for the lasing supermodes of the
(H,)71 type of the maximally symmetric field class.
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Fig. 6. Lasing frequencies versus the relative rim-to-rim
distance for the supermodes of the (H); ; type of the maxi-
mally antisymmetric (blueshifted) and maximally symmet-
ric (redshifted) field classes.

A similar behavior of lasing thresholds is observed
for the lasing supermodes of the maximally symmet-
ric field class (see Fig. 5).

In Fig. 6 we present the w/a dependences of the
lasing frequencies of the maximally antisymmetric
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and maximally symmetric WG supermodes (H,)7 ;.
They show that these supermodes are closely spaced
ifw/a is large and that they obtain a redshift or blue-
shift, respectively, if this value becomes smaller
than 1.

The near fields of the coupled modes in a CPM can
vary greatly depending on the mode type and the
separation between the disks. In the insets in Figs.
1-5 we present the field portraits corresponding to
the minima of thresholds for a six-disk CPM (marked
by arrows). They demonstrate that low-threshold su-
permodes have the fields locked inside elementary
disks and that little leakage occurs to free space.

This work was supported by the EPSRC-UK
through grant GR/S60693/01P, the Royal Society
through Project IJP-2004/R1-FS, and the INTAS-EU
through grant 04-83-3340. E. Smotrova’s e-mail ad-
dress is elena_smotrova@yahoo.com.

References

1. P. W. Evans and N. Holonyak, Appl. Phys. Lett. 69,
2391 (1996).

2. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T.
L. Reinecke, P. A. Knipp, A. A. Dremin, and V. D.
Kulakovskii, Phys. Rev. Lett. 81, 2582 (1998).

3. Yu. P. Rakovich, M. Gerlach, A. L. Bradley, J. F.
Donegan, T. M. Connolly, J. J. Boland, M. A.
Przyjalgowski, A. Ryder, N. Gaponik, and A. L. Rogach,
J. Appl. Phys. 96, 6761 (2004).

4. B. M. Moller, U. Woggon, M. V. Artemyev, and R.
Wannemache, Phys. Rev. B 70, 115323 (2004).

5. A. Nakagawa, S. Ishii, and T. Baba, Appl. Phys. Lett.
86, 041112 (2005).

6. E. I. Smotrova and A. I. Nosich, Opt. Quantum
Electron. 36, 213 (2004).

7. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P.
Sewell, IEEE J. Sel. Top. Quantum Electron. 11, 1135
(2005).

8. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P.
Sewell, IEEE J. Sel. Top. Quantum Electron. 12, 78
(2006).

9. E. 1. Smotrova, A. I. Nosich, T. M. Benson, and P.
Sewell, in Proceedings of International Conference on
Transparent Optical Networks, M. Marciniak, ed.
(National Institute of Telecommunications, 2005),
p. 139.



