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Figure 7 Optical implementation to perform an eight-point FFT
using PS

PS has the shape of a binary tree, with the exception that
each element in this tree accepts two inputs and yields two
outputs, while in a binary tree each element except the root
accepts one input and generates two outputs.

Consider the application of the PS in realizing an FFT
operation. The butterfly diagram of an eight-point FFT based
on the decimation-in-frequency algorithm [13] is shown in
Figure 6, where

N-1
XKk = 3 x(a]W§;  k=0,1,2,...,N -1 (10)
n=0

and

Wi = e izmkniN. p = 0,1,2,...,N—1. (11)
We observe that the interconnections involved change at dif-
ferent stages of the FFT [6, 13]. Therefore, instead of chang-
ing the interconnection at each stage, a fixed PS network can
be applied repeatedly to achieve the desired inerconneciton
pattern. An optical setup for repeated application of the PS
to perform FFT is shown in Figure 7, where the input signals,
after passing through the PS network, are fed back to the
corresponding locations of the input waveguides or optical
fibers and the PS operation is repeated on the feeback pattern.
The feedback path may also be realized using a combination
of beam splitter and mirrors. Note that adiditonal processing
on the output signals is necessary (to adjust the W§' coeffi-
cients) before repeating the PS operation. This process is
repeated at each stage of Figure 6 until the desired pattern is
obtained at the output. For an N-point FFT, for example, the
PS operation should be repeated log, N times. The system
shown in Figure 7 may also be used to implement other par-
allel processing algorithms like Batcher’s bitonic sort algo-
rithm.

5. CONCLUSION

An efficient implementation of the PS interconnection net-
work using Fredkin gates has been presented. When com-
pared to the other existing networks, this implementation is
programmable and cost effective. Desired patterns can be
generated at the output of the PS by appropriately program-
ming the control signal. Larger size PS networks can be con-
structed by connecting a smaller size fixed PS network in a
treelike structure. Optical implementation to perform PS re-

peatedly is shown, which is useful to implement various par-
allel processing algorithms. The PS implementation can also
be used for arbitration schemes in multiprocessor systems.
The information transfer rate through the network can be
doubled if two signals with different polarization modes (such
as horizontal and vertical) were to be transmitted through the
same channel.
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ABSTRACT

Dielectric thin-film guided mode scattering from a finite-element pe-
riodic grating of circular wires or circularly curved metal strips is
considered. An accurate solution method is developed and results of
computations for the H case are given. © 1992 John Wiley & Sons, Inc.
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INTRODUCTION

Dielectric-film waveguides with periodic inhomogeneities are
of considerable interest in connection with distributed-feed-
back and distributed-Bragg-reflection lasers, integrated op-
tical filters, grating couplers, millimeter-wave antennas, etc.
The vast amount of works in grating coupler theories and
their applications can be found for dielectric waveguides with
periodically grooved or corrugated surface structures of finite
and infinite extent [1-5].

All these theories are approximate; however, there exist
certain canonical geometries for which exact numerical so-
lutions are obtainable. In this article we present an accurate
method of solution for thin-film guided H-polarized mode
scattering from a finite number of metal objects shaped as
circular closed or open cylinders. The method follows the
previously reported work [6, 7] on the scattering by a single
screen in dielectric-slab waveguide. Althoug this approach is
equally valid for arbitrarily positioned scatterers, the period-
ically arranged collection of elements is investigated, and
some numerical results about far-field scattering patterns are
presented.

FORMULATION OF THE PROBLEM

The geometry of the analyzed problem is illustrated in Figure
1. Thin-film waveguide consists of a dielectric medium of
thickness 2d and permittivity e sandwiched between two free
half spaces. Time dependence is assumed in the form
exp( —iwt) and is suppressed everywhere. Thin film is known
to support a finite number of modes (surface waves) of two
types: TE,. having only z component of electric field, and
TM;. having only z component of magnetic field (j = 0,
Lo, ., ™, Qo™ are the numbers of modes). Note that
the TE/TM designation of these modes is based on the field
structure with respect to the direction of propagation.

Let one of the modes be incident on a finite-periodic grat-
ing of N cylindrical obstacles places inside the film normal to
the direction of mode propagation. It is obvious that for TE;
incident mode we have an E-polarized scattering problem with
respect to the cylinders’ axis, while for TM; mode case we
have an H-polarized scattering problem. Our article deals with
the H-polarized case although the general approach is equally
suitable for alternative polarization.

We consider the structure with elements of the shape of
either closed or zero-thickness nonclosed circular cylinders
with perfect conductivity.

Assume the scalar function H(r) to correspond to the H,
component of the total electromagnetic field and decompose
it to incident field and scattered field terms like

N
H(r) = H%r) + H*(r) = H'(r) + > HX(r), (1)
s=1

I

Figure 1 Scattering problem geometry for a thin-film waveguide

where H(r) is the field generated by currents induced on the
sth scatterer.
The incident field is that of one of the guided modes, so

H'r) = V¢O(y) exp(ihx)

_ fve%py), |yl =d o
A st - a1, b= ] o0, @
where g; = (k* — B)'2, p; = (KPe — h})V?, ve(*) = cos("),
v"(+) = sin(")

The functions H? and H* have to satisfy the 2D Helmholtz
equation

[A + K2(r)]H(r) = 0,
rERNy ==*d M,s=1,....,N (3)

with the piece-constant coefficient e(r) = € for |y| < d and
elsewhere, continuity conditions on the slab’s interfaces
[H] = 0, le'aH/ay] = 0, y = =d, 4)

where square brackets are for the jumps of functions, and
Neumann boundary conditions on the scatterers

aH(r)/on, = 0, reM, s=1....N (5
completed with the Meixner-type edge condition in the event
of nonclosed contours of M, namely,

J (k*¢ |HI* + |grad HP?) dr < o (6)
D

for any bounded domain D containing edges, and, finally, a
condition of radiation at infinity modified in comparison with
the well-known Sommerfield one. Mathematically correct
treatment yields the asymptotic expression which takes into
account the discrete spectrum of film’s natural guided modes
as well as the part of the field propagating in the form of
cylindrical wave:

: 2 1/2 )
H*(r) ~. {7 (¢) (@) elr, y==>d
0. Iyl <d
Q
T, — 6, x>0 .
SR 20 v entin 5. )

The far-field scattering patterns CD}’)(¢) and mode con-
version coefficients T,;, R,; are the quantities to be found.

ANALYTICAL-NUMERICAL SOLUTION

The scattered field is sought as a sum of N generalized double-
layer potentials

wm=hww£ﬂmmm,s=hm<&

where r, € M,, u’(r) is the induced surface current density
function, and G(r, r,) is the Green's function of the film,
which can be presented as a Fourier-type integral of known
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functions inside and outside the film. For example, if |y|,
|yl < d, then

Glr. 1) = g H (ke |r — 1)
i )
_ h ih(x—x;) dh, 9
+3m | FOn e e ©
where

F(y.ys, h) = (1 - %g> evd

. cos(py) cos(py,) | sin(py) sin(py;)
[‘ O =0 ] (10

with g = (k2 — h?)'2, p = (k% — h?)"2, and
Ay(h) = ige cos(pd) + p sin(pd), (11)

Ay(h) = igesin(pd) — p cos(pd). (12)

The equations A;(#) = 0 and A,(#) = 0 are the dispersive
equations determining natural modes of the film. Purely real
roots of them are for guided surface modes of even (TM,,)
and odd (TM,,.{, n = 0, 1, . . .) types, respectively, while
complex roots are for leaky waves and other complex waves.
For any fixed set of values of kd and e, there exists a finite
number of surface TM modes of both types, the lowest of
them, TM,, having no low-frequency cutoff.

To find the unknown current densities u*(r), one must
subject the field (1), (8) to the boundary conditions (5) and
seek the solution ensuring convergence of (6). This leads to
the set of N singular integrodifferential equations valid on the
contours M,,s = 1,...,N.

Then functions u’(r) are expanded in terms of an angular
Fourier series in a local coordinate of corresponding scatterer

() = Qlimke2a) > us ens,  s=1,...,N, (13)
(n)

with unknown coefficients u (n = 0, £1, .. .), and similar
expansions are derived for the Green’s function and the in-
cident field. Substituting all these expansions to integrodif-
ferential equations enables one to make term-by-term oper-
ations and come to N systems of dual series equations;

2 {;.Lf, <J,’,H,’,ei"“’»* +J., Z J,’nﬂnmei'"‘b:> + fsends
() (m)

N
+ 2 M [Jé > HOu(ke2L |q — s|)J eitnmeaeims
q=1%s (m)

F 00 S O D T (kL g — s)Tpet-mneh ""’]} -
(@} (m)

0s<|¢s~¢0s|s771

>ousent =0, b — dyl<6, s=1,....N, (14

(n)

where J, = J(ke'?a), H, = H,(ke'?a), ¢, = 0,if g <
or wif g > s,

i+l eg) ) [cos(n(// + pb) cos(t + pb)
_ 1 -=2 ipd
Q= — f ( p) € Ay(h)

_.sin(ny + pb) sin(ty + pb)
i ,0h) ] dh, (15)

f5 = 0%y + p;b) explilyL(s — 1)], (16)

and Y4 is defined by means of expressions

COos l/l(l) = h(/')/kéllz, sin l/l(]) = —p(j)/kfl/z. (17)

Besides, the edge condition is reduced to a set of inequalities

2 Pl +1l<»,  s=1,...,N. (18)
(n)

Dual series equations like (14) can be effectively regular-
ized by means of the partial inversion procedure based on the
Riemann-Hilbert problem technique. The term inverted an-
alytically corresponds to small-argument approximation of the
product of cylindrical functions derivatives in (14), i.e., to the
static part of the dual series operator. Resulting equations for
the unknown coefficients can be written, in the matrix-op-
erator form, as

N
[1 + > (AY + Ag)w] =B, s=1,...,N, (19
t=1

where the operator [ is the identity operator, and operators
A{, are compact in some functional space provided that the
screens do not intersect each other and the surfaces of the
slab. Note that operators AY, A¥ + A% are the same as for
the free space and slab mode scattering by a single sth screen,
respectively, while operators A{', describe the interaction be-
tween the sth and rth elements of the obstacle. Compactness
of the mentioned operators ensures the convergence of ap-
proximate solutions obtained through truncation to exact ones
with increasing matrix order.

As for the far-field parameters, they can be calculated with
the aid of a series:

(Tm; - 6m]> — 2(egm - pm)eipmd

X 2 ()N pub £ ni,)My(£h,). (20)
(n)

k sin ¢eP'?

P

aagr . [cosp'dcos(ny’ + p'b)
<3 o [ - (Rl

*f(¢) =

F Ajl(k cos @) sin p'd sin(nyy’ + p'b))

+ e;ip/bfinw']} M, (k cos (15), @)
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where g’ = g(k cos ¢), p' = p(k cos ¢), ¢ = (0, m), and
the functions

N
My(h) = D petts-b p=0,x1,... (22)
s=1

serve for angular coefficients of equivalent current density
induced on some effective circular scatterer (made of N ones)
as it is seen from infinity inside or outside the film.

NUMERICAL RESULTS AND DISCUSSION

Computations of the scattering characteristics have been
made by employing numerical procedures to the equations
obtained above and truncated to the order N,, = entire part
of (ke'">a) + 5 to ensure the accuracy of 0.1%.

Although the formal solution given by (19) is valid for any
type of the incident field. the case of a single-mode propa-
gation is obviously the most interesting for applications. To
cut all the higher modes off, one must operate with a dielectric
film satisfying the condition kd(e — 1)V? < /2.

So, all the results given in this section are for the film with
parameters kd = 1, € = 2.25 that provides the wave number
of the incident principal mode TM, to be hy/k = 1.16.

In Figure 2, the far-field scattering patterns are presented
for the grating scatterer of circular perfectly conducting wires
with the radius a = 0.07d. Figure 2(a) corresponds to N =
7 elements with grating parameter k = L/A = 0.117. i.e..
for a short periodic one. The radiation due to the scattering
can be seen to occur mainly to the backward half space. sim-
ilarly to the free-space scattering by a small body. The effect
of the film is in nulling the far-field amplitudes in the grazing
direction ¢ = 0, 7. Thus, along the film the power is carried
solely by the guided modes.

&9 ceesees )

=, 43

(L/2d=1,38)

Figure 2 Normalized far-field scattering patterns for a grating of
circular wires
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Figure 3 Normalized far-field scattering patterns for a grating of
narrow strips

Figures 2(b), 2(c), and 2(d) correspond to the grating cou-
plers of N = 5 wires of approximately the same radius but
spaced at greater distances, so that x = 0.43, 0.53, and 0.74,
respectively. In general, the lobes of the scattering patterns
are narrower as they are associated with forming the —1st
Floquet space harmonic of similar infinite grating. Unlike the
Oth harmonic which is locked inside the film, the — Ist one is
not subjected to the total internal reflection and radiates to
the outer space after refracting at the interfaces. The larger
the number of wires, the narrower the beams. If the period
is increasing, the second (smaller) lobe of the pattern is ob-
served detecting the launching of the —2nd harmonic, while
the main lobe shifts toward endfire radiation.

Figure 3 demonstrates patterns due to the scattering from
gratings of narrow circularly curved strips with parameters
6 = 175° and a/d = 0.33. Although a single strip inhomo-
geneity radiates like a 2D dipole [Figure 3(c)], the grating of
N = S elements can produce the scattering with a single main
lobe provided that the strips are inclined [Figure 3(b)]. Other-
wise the radiation is very much similar to that from a wire
grating coupler [compare with Figure 2(a)]. By increasing the
numberof strips one can enhance the directivity [see Figure
3(d)].

All the diffraction patterns presented in Figure 4 were
computed for gratings of N = 5 screens with parameters
a/d = 0.35. b = 0 and period « = 0.424 (L/2d = 1.35). If
the slits are narrow enough such screens display all the fea-
tures of cavity-backed apertures. At 8 = 30° [Figures 4(a),
4(b). and 4(c)] this corresponds to equiphase excitation of so-
called Helmholtz resonant mode inside each of the slitted
cylinders [6, 7]. This effect enhances significantly the ampli-
tude of the radiated field. The slots here radiate as intensive
secondary magnetic-line-current sources, and are excited
practically independently on the exact positions of the slots.
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Figure 4 Normalized far-field scattering patterns for a grating of
slitted circular cylinders

Indeed. if all the slots are at the same position as in Figures
4(a) and 4(b), there is a very small difference in far-field
patterns. Even when the slots are positioned in an unidentical
manner, as in Figure 4(c), the main features of the resonant
scattering are maintained. By varying the angular widths of
the screens one can change the pattern, as is demonstrated
in Figure 4(d) for a grating of quartercircular strips.

So. we can conclude that although a grating coupler of
circular wires is able to produce rather narrow beams of the
scattered field, it cannot concentrate the radiation in a single
direction. Unlike this one, a coupler of narrow strips can
produce single-beam patterns, while a grating of cavity-baked
slits can enhance the effectiveness of radiation.
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ABSTRACT

In this article a generalized study of elecrromugnetic (EM) missiles
has been presented. An EM missile source condition has been de-
rived from an arbitrary plane current distribution, and our analysis
shows that an arbitrary plane current distribution of finite size has
the ability to launch an EM missile, i.e., to realize slow decrease of
energy, on any axis perpendicular to the source plane so long as the
axis has an intersection point with the source region. This important
result reveals that the EM missiles are very much like light beams
which do not diverge. © 1992 John Wiley & Sons, Inc.

1. INTRODUCTION

Electromagnetic (EM) missiles have been an interesting topic
for several years and many practical EM missle sources have
been investigated both analytically and experimentally. It was
first realized by Wu that, under transient excitation, the en-
ergy transmitted by a current distribution in a plane to a far-
away receiver can decrease much more slowly than the usual
inverse square law r~>. Such pulses are called electromagnetic
missiles [1].

As far as the authors can determine, the discussion about
electromagnetic missiles has so far been limited to the cases
where the current sources are distributed either in a circular
disk or a rectangle. What one can obtain from the present
theories for a circular or a rectangular aperture is that the
EM missle can exist on or very close to the center axis of the
aperture, i.e., the axis of maximum radiation.

In this article we have presented a unified approach to the
electromagnetic missiles generated by an arbitrary plane cur-
rent distribution, based on the assumption that the transmit-
ting current is a separable function of space and time, and a
general EM missile source condition has been derived. Our
analysis shows that an arbitrary plane current distribution is
capable of launching an EM missile, i.e., to realize slow de-
crease of energy. Such an EM missile can exist not only on
the center axis but also on any axis perpendicular to the source
plane so long as the axis has an intersection point with the
source region. This important result reveals that the EM mis-
siles are very much like the light beams which do not diverge.
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