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The spontaneous emission of a molecular dipole in the presence of a thin dielectric microdisk is studied as a 3D solution of Maxwell’s
equations with two-sided generalised boundary conditions on the disk median plane, local energy finiteness and a radiation condition at infin-
ity. Results presented show that the radiative and non-radiative decay rates display resonance maxima associated with the disk natural frequen-
cies which can be explained through the effective-refractive-index approximation. The numerical solution is based on a set of coupled integral
equations of the Fredholm second kind, with smooth kernel functions, obtained with the aid of the method of analytical regularisation.
1. Introduction: The term ‘Purcell effect’ labels resonant enhance-
ment or, in more a general sense, modification of the spontaneous
emission of an atomic or molecular dipole in a non-homogeneous
environment [1–3]. Today’s interest in this phenomenon is
explained by the ability of various nano and micro-size particles
to increase spontaneous emission by many orders of magnitude;
such enhancement leads directly to applications connected to micro-
lasers and cavity quantum electrodynamics. More precisely the
study of this effect deals with the radiative and non-radiative
decay rates in the presence of resonant particles and their aggregates
such as microcavities, photonic molecules and various optical
nanoantennas [4–6]. As a rule the Purcell effect has been estimated
using the so-called ‘Purcell factor’ that is proportional to the ratio of
the resonant mode quality factor Q to the mode volume V. However,
it has been recently convincingly argued that this factor, originally
derived for closed cavities with imperfectly conducting walls,
cannot be used in the case of open resonators such as noble-metal
nanoantennas and semiconductor microdisks. The reasons are 2-
fold: here the natural modes do not form a complete orthogonal
set of field functions and the resonance does not lead to one-term
representation of the spontaneous emission rate [7]. Therefore for
an accurate estimation of the Purcell effect for open resonators it
is mandatory to use full-wave modelling methods and convergent
computational techniques. The aim of this Letter is to present an
illustration of such an analysis for a thin disk resonator and to
demonstrate that the associated resonances can be explained using
the empirical concept of effective refractive index.

Many analytical high-frequency approximations and direct com-
putational methods have been used for the wave scattering analysis
in the context of spontaneous emission, optical antennas and
various resonance scatterers. In the 3D modelling, the benchmark
case is a uniform or concentrically layered material sphere solvable
by the separation of variables (Mie theory). If applied to a collection
of spheres, the Mie theory leads to infinite-matrix equations with
favourable features [8]. For non-separable 3D geometries, accurate
computational tools are scarce. Ray-tracing high-frequency
methods are physically transparent; however, they fail to reproduce
fine details of the wave field and have uncertain domains of appli-
cability. Useful and flexible direct computational methods such as
the finite-difference time-domain (FDTD) technique suffer from
other problems including boundary staircasing, back-reflections
from the computational window, huge-size matrix inversion, and
a lack of convergence. As a result, computing a wavelength scan
of the emission rate with FDTD is painful. More specifically,
FDTD codes can fail to ‘see’ resonances with Q ≥ 105 unless
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very large time intervals are used in the numerical Fourier trans-
formations [9, 10]. Therefore volume and boundary integral
equation (IE) methods appear to be more economic and reliable
(if properly implemented) tools.

Consider the problem of finding the electromagnetic field emitted
by an elementary electric dipole (EED) located at the height h above
a material (i.e. magnetodielectric) disk of radius a and thickness t

(Fig. 1). The total field can be viewed as a sum of the incident
and scattered fields, the incident field being generated by the
same EED in free space. It has to satisfy the inhomogeneous
Maxwell equations off the disk surface, the boundary conditions
on this surface, and the radiation condition at infinity. For simpli-
city, we will further consider the case of an EED placed on the
axis of rotation and oriented parallel to the disk, although this is
not a limitation of the method used. Then the azimuthal dependence
of both the incident and the scattered field functions, in the natural
cylindrical coordinates (r, w, z), is cosw or sinw depending on the
component type, that is its azimuthal order is m = 1.

The problem formulated can be reduced to a volume IE in a
manner similar to [11]. This is, however, a singular IE whose accu-
rate discretisation is difficult and typically leads to thousands of
unknowns even for a nanoscale scatterer. Additionally, the conver-
gence is questionable (especially at the resonances) in the sense that
solving progressively larger matrices does not lead to smaller com-
putation errors. As a consequence, the volume IE approach is yet to
become a practical tool for a detailed parametric analysis of disk
scatterers. The same problem can be also cast to a set of boundary
IEs. Although boundary equations lead to more economic discreti-
sations than volume ones, they should be used with great care as
many forms of such IEs possess spurious eigenvalues, which
spoil the associated numerical algorithms [12]. Even if this is
avoided by using Muller’s IEs [13], the corresponding algorithms
should a priori meet difficulties if applied to the study of thin
disks; additionally, the way of handling the edges of the disk
cross-section should affect the convergence. All this, together
with general difficulty of working with four coupled boundary
IEs, has apparently prevented them from being an object of study
in 3D analyses; the published results relate to 2D models only [14].

If the disk thickness is small (t ≪ l), as typical for microdisk
lasers and nanoparticles, one can build a much more economic
algorithm having guaranteed convergence. The foundations of
this approach and basic equations can be found in [15]; its
implementation for an arbitrarily located dipole will be the
subject of a separate publication. The initial step is to simplify
the problem by neglecting the field inside the disk and shrinking
393
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the disk volume to the median section, at the expense of introducing
two-sided generalised boundary conditions (GBCs) at that section
[16]

(E+
tg + E−

tg) = 2Z0R · n × (H+
tg − H−

tg)

(H+
tg + H−

tg) = −2Z−1
0 Q · n × (E+

tg + E−
tg)

(1)

Here, Z0 is the free-space impedance, R and Q are the relative elec-
tric and magnetic resistivities, n is the one-side unit normal vector,
and the subscript tg marks the tangential field vectors. In the case of
the material of the disk being optically dense (|1rmr| ≫ 1), one finds
that [16]

R = iZ/2 · cot(
�����
1rmr

√
kt/2), Q = i/(2Z) · cot(

�����
1rmr

√
kt/2) (2)

where k ¼ v/c ¼ 2p/l is the wavenumber, Z =
������
mr/1r

√
is the rela-

tive impedance, and 1r and mr are the relative permittivity and
permeability of the disk material, respectively. Note that the error
incurred in replacing the disk with GBCs can be accurately found
only if confronted with an accurate ‘thick-disk’ solution.
Unfortunately, the latter solution is currently not available on a suf-
ficiently large domain of variation of the wavelength, disk thickness
and other parameters, apparently for the reasons discussed above.
A partial justification, however, has been done in the similar
GBC-based analysis of dielectric-strip gratings [17] using the
volume IE solution as a reference.

Further we present the field components in terms of a Fourier
series in the azimuthal coordinate w and scalar and vector Hankel
integral transforms in the radial coordinate [15]. Substituting
these functions into the GBCs, we obtain a set of dual IEs for
each azimuthal order m. Then we use the method of analytical regu-
larisation (see [18] for a review of this approach) to invert their static
parts and reduce them to two pairs of coupled Fredholm second
kind IEs with smooth kernels. This procedure is similar to that pub-
lished in [15] with some distinctions that will be the subject of a
separate letter. Note that in the case depicted in Fig. 1 only the regu-
larised IEs corresponding to m ¼ 1 are necessary. The features of
the latter IEs guarantee the existence and uniqueness of the solution.
What is remarkable is that any reasonable discretisation of these IEs
yields an algorithm with guaranteed convergence if the order of
discretisation is increased.

We have used a Nystrom-type method with Gauss higher-order
quadratures, and found that only 5ka

p
1/p unknowns are needed

to compute the far-fields with a uniform relative accuracy of not
less than 4 correct digits. This is supported by the plots in Fig. 2,
where the dependences of the relative computational errors on the
order of discretisation scheme N are presented. These errors are
defined as normalised values of the differences between the radia-
tive (and non-radiative) decay rates computed with given N and
with 2N. As one can see, an exponential convergence takes place.

To verify the results, we have also compared them with the data
computed using the commercial code FEKO (in [19], it appears that

Figure 1 Geometry of a dipole above a dielectric microdisk
394

& The Institution of Engineering and Technology 2011
FEKO uses a boundary IE if applied to the modelling of dielectric
scatterers; however, unfortunately, the form of this IE is not dis-
closed explicitly and the convergence of computations is sometimes
questionable), which is based on the planar-surface IEs and the
moment-method technique; both sets of data agree well although
FEKO needs hours for a single-wavelength computation instead
of a few seconds with our method.

Figs. 3 and 4 present, respectively, the dependences of the radia-
tive (Prad) and non-radiative, that is, absorptive (Pabs) decay rates on
the normalised frequency ka for the dielectric disks with thickness
t ¼ 0.0058a and permittivity 1r ¼ 12(1 + id), where d ¼ 0.2, 0.35,
0.08, 1025 correspond to the different losses in the material. If, for
instance, the disk diameter is 2a ¼ 5.2 mm, then t � 15 nm and the
largest computed value of ka ¼ 40 (conditioned by the requirement
that t ≪ l) corresponds to the emission wavelength of 409 nm. The
chosen value of dielectric constant corresponds to GaAs in the
visible range. Decay rates are normalised by the free-space rate,
which is P0 ¼ (12p)21 Z0

.I 2(kd)2, where I is the dipole current,
and d ≪ l is the dipole length (see [20], p. 381). One can see the
resonances in both the radiative and absorptive decay rates at
certain frequencies where the peak values of Prad are several
times higher than P0. A good insight into the nature of thin-disk res-
onances can be obtained using the effective index theory [21, 22].
According to this theory, the approximate characteristic equation
for the thin-disk resonances of arbitrary azimuthal order m (i.e.
with the field dependence given by cos mw) is derived as

Jm(aH
eff ka) ≃ 0 (3)

where Jm is the Bessel function of the order m and aH
eff is the

Figure 3 Normalised radiative decay rate against the dimensionless fre-
quency parameter, ka; the stars indicate the zeros of the approximate
characteristic (3) for m ¼ 1

Figure 2 Relative computation errors in terms of the decay components
against the order of discretisation scheme
Disk parameters are given in the inset. The truncation number corresponds to
the upper limit of integration in the spectral integrals
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effective refractive index of the disk that is smaller than the bulk-
material refractive index a ¼

p
1r. The latter quantity is found as

the propagation coefficient of the principal TM-polarised natural-
guided wave (i.e. having Hz = 0) of the infinite dielectric layer of
the same composition, normalised by the free-space wavenumber.
Within the model considered, this value is obtained from the con-
ditions (1) if we use them to find a natural TM-wave guided by a
thin material layer. The result is

aH
eff = [1 − 1/(4R2)]1/2 (4)

where R is a dimensionless and complex-valued function of the
wavelength, layer thickness and dielectric permittivity specified
by (2).

In Fig. 5, we have plotted the real and imaginary parts of aH
eff

as a function of the normalised frequency, ka ¼ kt(a/t), for the
disk material permittivity 1r ¼ 12(1 + i × 1025). As one can see,
ReaH

eff . 1 ≫ ImaH
eff in the whole range computed.

In our case of the on-axis EED (Fig. 1), the azimuthal field
dependence corresponds to m ¼ 1. The roots of (3) for m ¼ 1
and 1 ¼ 12 (i.e. neglecting the losses) are marked with stars in
Figs. 3 and 4. They are remarkably close to the corresponding
maxima in decay rates, especially in the case of d ¼ 1025.

Fig. 6 presents the efficiency h of the radiation, defined as
h ¼ Prad/(Prad + Pabs). As one can see, the efficiency displays a
broad maximum around ka ≃ 6. It drops at lower frequencies
because in the static limit the absorbed power decreases less
quickly than the radiated power, and also drops down at higher fre-
quencies with the rate conditioned by the bulk losses in the disk
material.

Far from the disk, the total field radiated by the EED propagates
as an outgoing spherical wave whose complex amplitude depends
on the azimuthal and elevation angles. In the configuration
studied, the dependence on azimuthal angle is given by the function
sin w or cos w depending on the field component.

Figure 4 Same as in Fig. 3 for the normalised non-radiative decay rate
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In Fig. 7, we show the normalised radiation patterns, as a function
of the elevation angle, for the Poynting vector of the EED located
above a thin dielectric microdisk with 1r ¼ 12(1 + i × 1025), for
the first three resonances on the plots of Figs. 3 and 4. They demon-
strate that at the disk resonances the radiation patterns are dominated
by the scattering that occurs predominantly in the disk plane. This is
in full agreement with the nature of resonances discussed above as
standing cylindrical surface waves formed by the principal-guided
TM-wave of a dielectric slab excited by the EED and reflected
from the disk rim.

2. Conclusion: In summary, we have accurately quantified the
Purcell effect or, equivalently, the modification of spontaneous
emission rates (both radiative and absorptive) of the horizontal mol-
ecular dipole in the presence of a dielectric microdisk of nanoscale
thickness, by studying it from first principles. This has been done
over a wide range of the normalised wavelengths: in fact, across
the whole visible band if the disk diameter is of several microns.
The resonances revealed in the spontaneous emission rates can be
explained using the effective refractive index model of the disk.
They are caused by the standing waves formed because of the
guided wave of the dielectric slab reflection by the disk rim. This

Figure 5 Effective refractive index against ka

Figure 6 Radiation efficiency against the frequency parameter ka
Figure 7 Normalised radiation patterns for the disk with 1r ¼ 12(1 + i × 1025) in the resonances at ka ¼ 12.42
a ka ¼ 14.78
b ka ¼ 17.02
c In two planes: w ¼ 0 (red) and w ¼ p/2 (black)
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observation can serve as a de-facto justification of this empirical
model from the viewpoint of rigorous Maxwell theory.

Following [15], the same method can be also used for the accu-
rate analysis of the spontaneous emission of an arbitrarily located
and oriented molecular dipole in the presence of a thin microdisk.
Such a general case analysis, however, requires the solution of a suf-
ficient number of independent pairs of the coupled regularised IEs
corresponding to different azimuthal orders m; therefore this analy-
sis will be presented as a full-size paper elsewhere. Thus, the
analytical–numerical method that has been applied here places
thin material disks in the same position as spherical scatterers in
the sense that they can be computed very economically and with
controlled accuracy.
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