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L|Pé7 2. Fundamentals of Analytical Regularization

Reduction of EM BVP to a Fredholm’s operator equation

Boundary-value problem

«  Maxwell equations e Integral equations

. Boundary conditions II~ + Series equations

« Edge condition GX =Y
* Radiation condition 1
G=G,+G,
X+AX =B Suppose that:
-1 -1 is more
A:Gl GZ! B :Gl Y -II Gl singular than Gz
| A||L2< o, Bel, and Gl_l is known

Fredholm 2-nd kind IE or
infinite-matrix equation




3. Consequences of Regularization

Fredholm’s theorems

X +AK)X =B
Existence of exact solution:

If operator equation is 1
equivalent to BVP, then ||~ X = (| + A(k)) B

its solution is unique for
all real wavenumbers k

Point-wise convergence of discrete solutions:
e(N) =l X = X™ 11X D™

-1 N
A+ AT A= AT —=5—0

Condition number is stable:

cond(l +A) |1 +A|-||(1 + A" ||<

4. Efficient Regularization Schemes

What is invertible?

G mm) G=G+G, 7G,

e Canonical-shape part (circular-cylinder & sphere)
well developed — trigonometric basis; used for
multiple canonical scatterers & in a layered host medium
Small-contrast part
well developed — Muller equations, (loaded) volume IE
« Static part: PEC and imperfect zero-thickness screens
well developed — EFIE + Chebyshev basis in 2-D;
variants —in FT domain, RHP (in periodic case)
* HF (halfplane) part: PEC and imperfect screens
scarcely developed — most promising for solving

big problems of quasioptics with economic algorithms




5. Dielectric Cylinder Scattering - Formulation

Boundary-value problem

y
Scattering by an arbitrary smooth Incident D, \D,
dielectric cylinder. Incident fieldisa ~ Wave
plane wave in the reception mode o X
and a directive localized source field ¥4 1 s
in the transmission mode &
wavenumber kj =k gj,uj a; :1//“1' or 1/gj
2D BVP: Find uj(F). reDj =12, such that
) ) 2y\,,SC _
1. Helmholtz equation off S: (A + kj )Uj (r=0
2. Boundary conditions at S:
ouy (F) U, (T)
U (P =Up(F)lc and &g —=— =
s~ "2\ JIs 1
on on g

3. Sommerfeld radiation condition

6. Muller’'s Boundary Integral Equations

Small contrast inversion

Fields representation = combination of the single and double layer potentials

(1)1 i) ) ) )| o <D,
j=12

02(7)= 1| (652 ) -ue(0) ) [ s Py

Parameterization + Boundary conditions =>

Uniquely solvable set of BIEs of the Fredholm 2nd kind :

—T ot AL, )t + quas)B(t,tS)dts ~L)uglt)

on

[ quz(t (j:[ Clt.t;) +qu1 (11, ), = L(5) o)

aj=py o g for E- or H-polarization




7. Muller’'s Boundary Integral Equations

Kernel properties & discretization

In one of the kernels, a log-type singularity is kept; others are regular

Alt.t,)= L(t)(g%, @] B(t,t,)= L(t)(G1 7%G2] cltt)= L(t)[ °G,  0°G, j

s ans 2 ansan ﬁ
L %G @ G,
ANl .. IDIl < (e~ 1)Const  bite)=L -5

Computing the singular integrals is o

improved by adding and subtracting G :lHo(ZkaSin\(t —tg )/2‘)
. ) 0

the canonical-circle operators, e.g. G 4

MBIEs + trigonometric-Galerkin discretization 2 2 .
=>Fred.-2 Matrix Equation filled in with DFFT ~ p(t)L(t)=-— Y p,e™
V4

m=—o0

Z pm (5km + A(m) + Z qm Bkm = uk me\eﬂla{\o“
Mm=—0 m=-wx Yl
il P o
e “a,\‘s used: LOFr

> p.C. + 0.5, +D,) =0,

8. MBIE Algorithm Properties

Test example: super-ellipse _ _
"super-ellipse" cross-section

Homogeneous dielectric cylinder: P

=1
=3
=1

«super-ellipse» = rectangle with smoothed edges:

(x/12)* + (y/a)” =1 o<v<w

o

+1 "super-ellipse” curvature

!

Relative computational error, u\ V=3
determined by normin |, i

H 7N _ 7N+
= 'y e
e(N) HZNH 3 !/
where 1 | ’//
e 3 e -
N IN 2N B | Py oL
27 =17, .1, [ RO

s |t = 0471 %m__
| 4, = 10457 =
3 digit accuracy is achieved if el ! | S S |
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N ~kalve +v +10

Computational error versus matrix block size N




9. Radiation of a Dielectric Rod Antenna

Far-field characteristics: pattern,

radiated power & directivity /—{
a

q,(¢)=2i D pnTe—ik(cos(w)x(ts%sin(w)y(rs)) e,
g ——

Elliptic rod geometry and notations:

2z
rad 2 2 curvy line is the CSP feed aperture,
P =0y ; .H(D(tX dt “I" is the elongation (axes ratio)
0

D(pp) = 2ap ()2 - (P

Directivity versus the rod elongation; dashed = in the main lobe, solid = NF:’” g_azl:zed
along the axis (p =). ka =1, £=2.5, v=1, kb =0.1, f =z, A/a=0.7; y/a =0. ;a;:e::’"

10. Wave Focusing by Elliptic-Front Lenses

Geometry & Principle

true ellipse

) hemiellipse
Cross-sectional
contour: s-s,Us, a lens

. . bottom
twice-continuous

curve combined from
smoothly joined halves
of ellipse and super-

ellipse

receiving apperture

GO: Parallel rays come
to the rear focus of the
ellipse if the eccentricity

is e=1/\/g ‘ ! all 2

(— lens extension




11. Wave Focusing by Elliptic Lenses

Near field characteristics

] o

204 I:‘: Near-field intensity
10 w2 portraits for true

o] - elliptic Ier_15es of

] various sizes

] ka = 30
-20«
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12. Wave Focusing by Elliptic-Front Lenses

Near field characteristics

EH-Circle lens EH-Elliptic lens
e k 4% Near-field
';: “* intensity
- = portraits for
- . Extended
Hemi-Elliptic
y=00 ] (EHE)
" I H and

o Hemi-Circular

w  (EHC)

wa silicon lenses

e

ka=10
e=117




13. Wave Focusing by Elliptic-Front Lenses

Near field characteristics

EH-Circle lens EH-Elliptic lens Focusability
; vs |,
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Xm Xos X

Main focus
x-coordinate
vs |,
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14. Wave Focusing by Elliptic-Front Lenses

Near field characteristics

EH-Circle lens EH-Elliptic lens
g ' [, =0.320 1 Near-field intensity portraits
o0 ] for EHE and EHC silicon
e lenses for various values of
o
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15. Natural Modes of Microcavities

Near fields of modes in open 2-D dielectric resonators

Eigenfrequency boundary-
value problem => Muller’s
boundary integral equations
=> analytical extraction of
circular-contour part =>
determinant equation

Det (I+A(k))=0

(b)

Modes in a square cavity
with rounded edges
(superellipse with v=10)

and in a curved triangular
cavity

Refractive index is 2.63

16. PEC Strip Scattering - Formulation

Boundary-value problem

Scattering by an arbitrary smooth

open cylindrical PEC strip. Incident ¥ Y
field is a plane wave in the RCS
analysis and a directive localized 7777 ™ I"
feed field in the reflector antenna
analysis
sC in sC
2-D BVP: find such u™(F), u=u"+U> tha
. . 2y, ,SC _
1. Helmholtz equation off M: (A +k )U (r) =0
2. Boundary conditions at M: ( )
oulr
u(F),, =0, E— pol. —— =0, H-pol.

3. Sommerfeld radiation condition




17. Electric-Field Integral Equations

Singular Integral Equations

Fields representation — single/double layer potential:
s » E-pol. H-pol.

e 0
u(r) =1 p(r)G,(r,r)dl,,  u(r) = Ja(r)- -Gy (r,r)dl,

M M on,
o : G, (T, F;):iHél)(k |F—T.|])  Free space Green’s function

Parameterization of contour M => Boundary conditions => Singular IEs of the 15t kind

E-polarization H-polarization
. ny 01 0 ou”"(t)
t. )G, (t,t, )L(t, )dt, =—u"(t), — [qlt G, (t,t )L(t )dt, =——=
le(S) O( s) (s) S u () an;[lq(s)an O( s) (s) S an

S

Direct discretization of SIE does not guarantee convergence, is inefficient and inaccurate

18. EFIE & Method of Analytical Preconditioning

Static-part inversion: diagonalization with eigenfunctions

M 5 Green’s function decomposition =static singular part + regular part

Go(r5)=, In|7 €, [+R(k|F =1,

E-pol.

1 T(t .

ILB,Z In(t ~t, )dtS =0T, (t), T (t)= Chebyshev polynomials

a(l- ts) of the 1-st kind

H-pol.
1 o’ In(r —1,) i
_t\¥2 - T s — _  Chebyshev polynomials
,Il(l LU, () on? dt; =7,U, (1), U, of the 2-nd kind
M

To transform SIE to the Fredholm AX=B

2" kind matrix equation, take full Il

set of the corresponding v

polynomials as a basis (l.e., make X+CX =D

analytical preconditioning)




19. Scattering by a Dielectric Strip Grating

Static-part inversion: diagonalization wi

(Ef +Er)=2R(H; -H7),  (H7+

TS

4 5 L]

o
n
s ol

and absorbed power versus and ab:

Generalized boundary conditions on thin dielectric strips:

where R=Q¢7 =(i/2)¢,¢, ctg(ye, 1.k, 12)

k
Fractions of transmitted, reflected  Fractions of transmitted, reflected

normalized frequency, 5=10+i, ¢=0°, normalized frequency, £=10+i, p=0°
2w/d=0.5, 7/d=0.01. 2w/d=0.5, #d=0.01.

th eigenfunctions

H7)=2Q(E; - E)

PN PP PR DR |

1 2 3 4 5 L]

sorbed power versus

20. Radiation of Discrete Lun
Fed by Conformal Feed

eburg Lens

Conformal patches

Lens:
concentric Given
spherical layer driving
of uniform current:
dielectrics centered
Patches: PEC, FT2|I\E/|DDOr
zero-thickness, as a p;‘obe
co-axial or a slot
spherical disks, 2 model
0<O<rx e(r)= 2—(r)

R

10



LlF’é; 21. Radiation of Discrete Luneburg Lens
Fed by Conformal Feed

g

SCMA structure :

8
snﬂmlg 1
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0,, = 0.02°, 5
0,,, = 0.04° ;|
Fin/Tout = 0.999 5|
| i
"large lens" 4

Lens structure :
Ngher - NUMber of shells
0; =0, r; =i/ Ny

€ = 2 - [(2i-1)/ 2Ngpg] 2
Vi, 1 <i <Ny

Lens => small shift of SCMA resonance + whispering-gallery modes

. Conclusions: Merits of Analytical
Regularization of Integral Equations

. Generates convergent and economic
scattering algorithms with easily
controlled accuracy

2. Leads to reliable simulations that predict
even finest field features

Easily accesses quasioptical range
Is promising for CG iterative solvers
Can serve as a fast core for optimization

Enables explicit asymptotic solutions

N o o & W

Reduces eigenvalue problems to
favorable determinant equations
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