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From the viewpoint of mathematical modeling based on the so-called cold models of 

lasers, the lasing is the existence of at least one real-valued natural frequency of an 
inhomogeneously filled dielectric open resonator. This may happen provided that there is a 
sub-domain, inside the resonator, that is occupied with an active material characterized by 
positive gain (equivalently, negative loss factor or negative imaginary part of dielectric 
permittivity). Therefore we consider several generalized eigenvalue problems for the 
Helmholtz and Maxwell equations, where the fields depend on time as e-ikct  and the 
normalized frequency k is eigenparameter: (i) localized 2D dielectric resonator in a 
homogeneous medium, (ii) in a PEC-wall waveguide, and (iii) in a stratified dielectric 
medium, (iv) localized 3D dielectric resonator in a homogeneous medium, (v) in a PEC-wall 
waveguide or a stratified medium, (vi) and near a regular or periodic fiber. 

These problems are about the time-harmonic electromagnetic fields in and out of bounded 
penetrable objects placed in unbounded host medium. Their correct statement needs certain 
condition imposed on the field behavior at infinity in the 2-D or 3-D background space (also 
called host medium). Such a condition, in each case, follows from the behavior of the 
corresponding Green’s function analytically continued from the real values of k to the 
complex domain. Here, the real-k Green’s function satisfies, each time, the Principle of 
Radiation in the form of corresponding radiation condition. Thus, for the real-k counterparts 
of 2D problems mentioned above, in (i) this is the Sommerfeld condition [1], in (ii) this is the 
Sveshnikov condition [2], and in (iii) this is the condition established in [3]. Different 
arrangement of “infinity”, in each 2D case, entails different shape of the Green’s function. As 
a result, the domains of their analytic continuation to complex k are also different. In (i) this is 
the Riemann surface (RS) of Ln k, in (ii) this is RS of Σn=0

∞(k2-(πn/d)2)1/2, where d is the 
waveguide-wall separation, and in (iii) this is RS of Lnk+Σn=0

∞(k2-kn
2)1/2, where kn are the 

real-valued critical frequencies of the guided-wave modes of the stratified medium - if they 
exist. The complex-k conditions at infinity that inherit all the features of real-k radiation 
conditions and reduce to them at the real axis of the principal sheet of corresponding RS, are 
called Reichard’s conditions [4]. In each case, as one can show by using the Poynting 
theorem, if dielectric permittivity has zero or positive imaginary part (i.e., the object is 
passive), then the k-eigenvalues can be only complex-valued and have negative imaginary 
parts on the principal sheet of respective RS. The corresponding eigenfunctions, or modal 
fields, are destined to decay in time but grow up in space away from the resonator. Therefore 
these problems are the generalized eigenvalue problems, to distinguish them from classical 
eigenvalue problems. For the 3D problems, the situation is similar. Modifications are the 
result of the vector character of 3D electromagnetic fields. For example, instead of 
Sommerfeld’s condition, the real-k case of (iv) needs so-called Silver-Muller radiation 
condition that eliminates radial components far from the scatterer [5,6]. In the problems (v) 
and (vi), the real-k radiation conditions are vector analogies of the 2D ones; for (vi) it was 
established in [3]. One important difference is that the modes guided by a fiber are hybrid and 
may carry the power in backward direction that must be accounted for in the radiation 
condition (see [3]). The domain of analytic continuation of the Green’s function in k in the 
case (4) is very simple: this is only a complex plane. However, as soon as the background 
space contains infinite regular boundaries, e.g. a stratification or a fiber, then this domain 
turns to a composition of logarithmic sheets of the Ln(k2-kn

2) type, with the branch points of 
RS located at the critical frequencies of the guided modes, kn. 
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Therefore, infinite-sheet branching of the domain of continuation of the field function in 
k is always the price paid for introducing some geometrical infinity. Firstly, neglecting the 
finite length when switching from the free-space 3-D to the free-space 2-D models leads to 
the Lnk branching. Secondly, admission of infinite boundaries, either PEC ones or penetrable 
flat and curved ones, leads to additional Σn=0

∞(k2-kn
2)1/2 or Σn=0

∞Ln(k2-kn
2) branching in the 2-

D and 3-D models, respectively. All the eigenvalues, ks , “live” on a corresponding RS – this 
is their natural habitat. Based on the theory of integral equations and operator-valued 
functions [7], one can verify that each of ks is a piece-wise analytic function of geometry and 
material parameters. Analyticity can be violated only if two eigenvalues coalesce. They are 
only of finite multiplicity and may appear or disappear only at branching points and at infinity 
on RS. In the real-k scattering problems, the field characteristics display the frequency 
dependences, which are sharply broken at the critical frequencies kn (at branch points). This is 
because their derivatives in frequency contain square-root singularities there. An old example 
of this effect is the Wood’s anomalies in the scattering from infinite-periodic diffraction 
gratings. Here, an elementary cell of the grating can be related to the so-called Floquet virtual 
waveguide with PEC walls. 

Finally, we discuss the effect of lasing. As we have seen, each complex-valued natural 
frequency ks of a passive open resonator is analytic function of dielectric permittivity, and 
hence a continuous function of its imaginary part. If the latter is varied, each natural 
frequency migrates on the corresponding RS, and if it takes negative values, the frequencies 
are allowed to migrate across the real axis of the principal sheet of RS into the upper 
halfplane. Purely real value of every ks may take place only at a specific value of the gain, γs. 
Therefore, the Lasing Eigenvalue Problem can be formulated as a homogeneous boundary-
value problem for a set of time-harmonic Maxwell (in 3-D) or Helmholtz equations (in 2-D). 
It must contain an appropriate Silver-Muller (in 3-D) or Sommerfeld (in 2-D) condition at 
infinity adapted to the type of host medium, and corresponding boundary conditions. It is 
necessary to find eigenpairs of real-valued normalized frequency ks and gain γs that generate 
non-zero solutions, i.e. vector (in 3-D) or scalar (in 2-D) field functions of the lasing modes. 

Here, as we have seen above, admission of infinite boundaries in the host medium brings 
infinite number of branch points located at the real k-axis of the principal sheet of RS. The 
natural frequencies may appear or disappear only at the boundary of the domain of solution 
analyticity in k, i.e. at the infinity and at the branch points kn. Therefore, searching for 
eigenvalues and tracing their trajectories with the loss/gain variation may potentially hit a 
situation that ks coalesces with kn and then either migrates further on the principal sheet (good) 
or goes to the other (“non-physical”) sheet of RS (bad) or even disappears at all (ugly). Such a 
“swallowing up by the earth” is of course an exotic thing and tells only about the defect of the 
model used. 
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