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1. Introduction

Graphene is attractive as a non-conventional material for 
creating fundamentally novel tunable nanoelectrical, nano-
mechanical, and nanochemical devices [1–12]. It is also 
known for the high electromagnetic field localization near 
to its surface that offers new applications in antennas and 
absorbers. Moreover, thanks to the inductive nature of gra-
phene’s surface impedance, it is able to support the natural 
surface plasmon (SP) wave, which is a transverse-magnetic 
wave caused by the collective oscillations of surface charges. 
As a result, intensive SP resonances exist on the patterned 
(i.e. finite) graphene samples, shaped as SP standing waves 
created by the reflections of the above-mentioned natural SP 
wave from the sample edges. Then the size of the graphene 
sample determines the range of the SP resonance frequencies: 
it varies from the infra-red for the nano-size samples to the 
THz range for the micro-scale ones.

SP resonances on graphene nano-objects present a 
remarkable alternative to conventionally used noble-metal 

nanoparticles in the optical range [13–15] in the context of the 
design and development of high-performance sensors of small 
changes in the environment refractive index. Here, the impor-
tant advantages of graphene are its electronic and mechanical 
properties such as high electron conductivity combined with 
exceptional durability. One of the most promising features of 
graphene as compared with metals is the opportunity to alter 
its conductivity by applying an external electrostatic biasing 
field, which modifies graphene’s chemical potential. This can 
be easily realized in practice. For instance, one can use a thin 
polysilicon layer as a dielectric substrate supporting the gra-
phene, and apply a dc bias, as was suggested in [1, 2, 7].

Still, one can find that the analysis of graphene strips as 
sensors has so far been concentrated on the modeling of nano-
size strips analyzed as visible-range and infra-red sensors. 
Unfortunately, these simulations may be not sufficiently cor-
rect, because it has been experimentally demonstrated [16] 
that the edge effects in graphene conductivity are important 
in structures with dimensions smaller than 100 nm. Only for 
considerably wider strips can one disregard the edge effects 
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in the conductivity and use the electron conductivity model 
developed for infinite graphene sheets. These wider strips 
have their SP resonances at the sub-THz and THz frequen-
cies, and their sensing characteristics have not been modeled 
in detail so far.

Additional motivation to move the sensing to the THz 
range can be found in the fact that this range is very actively 
investigated and developed today. This promises efficient all-
terahertz sources, circuits, and systems in the near future.

In this paper we presented a numerical analysis of the 
SP resonances on a micro-size graphene strip and the corre-
sponding sensing properties with respect to the host medium 
refractive-index changes in the THz range. We also derived 
advanced analytical expressions that yield the sensitivity and 
figure-of-merit (FOM) values for a graphene strip with an 
accuracy acceptable for quick practical evaluations. Although 
graphene strips are commonly placed on a substrate, we con-
sidered a strip suspended in a homogeneous medium. This 
enabled us to eliminate the effects of the substrate that need 
another focused study. Note also that suspended-graphene 
configurations are also realizable and are getting increasing 
attention [18, 19], apparently because the graphene conduc-
tivity can be degraded by the adjacent substrate.

We believe that our current analysis is important as pro-
viding the limit values of the sensitivities of the plasmon reso-
nances. This is based on the well-established understanding 
that the ‘surface sensitivity’ of the resonances on a strip with a 
finite-thickness layer of the analyte is always smaller than the 
‘bulk sensitivity’ and tends to the latter if the layer becomes 
thicker than the wavelength in material [17].

Throughout this paper, the time dependence was adopted 
as ( )ω− texp i .

2. Essentials of numerical modeling

Our study of the bulk refractive-index sensitivities of the SP 
resonances of a micro-size graphene strip of width d (see 
figure  1(a)) in the THz frequency range was done using a 
widely accepted model of graphene conductivity and an 
advanced in-house numerical code based on the fast and a 
priori convergent solution to the associated singular integral 
equation (IE).

A graphene monolayer is a single-atom layer of graphite 
and hence can be viewed, in terms of the modeling, as a zero-
thickness electrically conducting sheet even at frequencies as 
high as the optical range. Its electron conductivity ( )σ ω µ τ T, , ,c  
depends on the angular frequency ω, temperature T, electron 
relaxation time τ, and chemical doping potential µc [1–8]. We 
used a model of graphene’s conductivity known as Kubo’s 
formalism, the details of which can be found in appendix A.

According to that model (see figure 1(b)), the conductivity 
in the THz range is a complex-valued function of the fre-
quency. The unique property of graphene is that the associated 
surface impedance ( ) ( )ω σ ω=Z 1/  is ‘inductive’, i.e. has a 
negative imaginary part if the time-dependence convention is 
adopted as ( )ω−i texp . As a result of this circumstance, a sheet 
of graphene can support traveling SP wave at THz frequencies 

that are two orders lower than for the noble metals. Note 
also that Z has a nearly constant real part controlled by the 
chemical potential, a nearly linearly varying imaginary part, 
and ( ) ( )ω ω ω≈ ⋅ � �Z Z ZIm const Re0  in the whole THz 
range, where  π= ΩZ 1200  is the free-space impedance.

A strip is an example of the patterned graphene; hence it 
displays pronounced resonances in the scattering and absorp-
tion of THz waves polarized orthogonally to the strip edge. 
Each resonance is caused by the corresponding standing-wave 
natural mode created by the reflections of the above-men-
tioned SP wave from the strip edges. These resonances were 
revealed in the papers [20, 21] and are well documented by 
now using a variety of approximate modeling methods, both 
on stand-alone graphene strips and on arrays of these strips 
[22–27].

For the proper positioning of the above-mentioned works 
it is necessary to emphasize that the numerical results of [20, 
21] were obtained by an algorithm that was divergent (see 
the discussion of this divergence in [24, 25]). Practically 
speaking, this means that although the first 2–3 digits (and 
sometimes even fewer) of the numerical solution can be estab-
lished  correctly, the attempt to reduce the error by increasing 
the discretization order fails. It is still worth noting a certain 
mystery: in [20], the existence of so-called ‘edge modes’ in 
addition to SP modes was reported; however, in the analysis 
of the scattering by the grating of these strips no resonances 
on the edge modes were found in any of the papers [21–27].

A trusted and efficient instrument for the modeling of the 
scattering by graphene strips and the associated resonances 
with the desired accuracy can be based either on the Nystrom 

Figure 1. (a) Micro-size graphene strip illuminated by a plane 
wave, and (b) real and imaginary parts of the graphene impedance Z 
versus the frequency in the THz range.
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discretization of the corresponding singular IE [23, 24] or on 
the analytical regularization of that IE [27]. In each case the 
convergence is guaranteed by the corresponding mathematical 
theorems. We used the former approach and code.

The associated IE is derived as follows. The scattered 
field function Hz must satisfy the Helmholtz equation in two 
dimensions (2D), the boundary conditions at the graphene 
strip, the edge condition, and the Sommerfeld radiation condi-
tion at infinity. The graphene strip is electromagnetically char-
acterized [1, 2, 28, 29] with the aid of the following boundary 
condition with complex surface impedance Z, for the field 
components tangential (tg) at the top (+) and bottom (−) 
sides of the strip [28, 29]:

( )[ ] [ ]+ = × − =
+ − + − + −→ → → → → → →

E E Z n H H E E1/2 , .tg tg tg tg tg tg (1)

This pair of equations is easily identified as the so-called 
‘zero-thickness resistive-sheet’ condition, which was intro-
duced in the 1980s in the studies of the microwave-range scat-
tering by thin dielectric and imperfect metal screens; see, for 
instance, the papers [30–33] and the further references therein.

Presenting the Hz-component of the scattered field as a 
double-layer potential we satisfy both the Helmholtz equa-
tion  and the radiation condition. Then, using (1) and intro-
ducing the normalized coordinate = −t x d2 / 1, we obtain the 
equation fully equivalent to the original problem,

( ) ( ) ( ) ( ∣ ∣)( )
( )∫

κ
β+

−
−

= κ β

−

− +Z Z w t w t
H t t

t t
t4 / d 4 sin e t

0 0
1

1
1
1

0

0

i 1 cos0

 

(2)
for the unknown density function ( ) ( ) ( )= −+ −w t H t H tz z , 
which is the surface current induced on the graphene strip. 
Here, κ = kd /2 is the normalized frequency parameter, and 
H •1

1 ( )( )  is the Hankel function. Note that this IE is hyper- 
singular and should be understood in the sense of Hadamard’s 
finite part. Hence, simple method-of-moments algorithms 
(found behind FEKO and other commercial software) based 
on the meshing of the strip contour and the use of local basis 
functions diverge since denser meshing does not lead to more 
accurate discrete approximation of the hyper-singular kernel. 
The same is true for the Fourier-expansion method (also 
called the Rigorous Coupled-Wave Algorithm) in the case of 
an array of strips.

Therefore, in [23, 24] we developed the Nystrom-type 
algorithm, which performs the discretization of IE (2) with 
the aid of specially tailored quadrature formulas of the inter-
polation type; this entails a guaranteed and quick convergence 
of our algorithm.

Once the surface current was found, the total scattering 
cross-section of the strip was computed as

( ) ( )

( ) ( )

∫

∫
π

ϕ ϕ ϕ

κ
ϕ

= Φ Φ

=

π

κ ϕ
−

+
− +

W
k

w t t

2
d ,

4
sin e d ,t

sc 0

2
2

1

1
i 1 cos

 
(3)

and the absorption cross-section as

( )∫=
−

+
W

d Z

Z
w t t

2

Re
d .abs

0 1

1
2 (4)

The sum of these two quantities is the extinction cross-sec-
tion (ECS), and the Optical Theorem tells that they obey the 
power conservation law,

( ) ( )β π+ = − Φ +W W k4/ Re .sc abs (5)

In our computations, equation (5) was always satisfied with 
machine precision that served as an additional (in view of the 
guaranteed convergence) partial validation of the numerical 
solution.

3. Surface plasmon resonances

A stand-alone micro-size graphene strip illuminated by an 
H-polarized wave (figure 1(a)) demonstrates a sequence 
of resonances in the THz range (see section  3 of [23]).  
In figure 2(a), the normalized (by 2d ) extinction spectra for 
the wave incident under the angles β = °90  and °45  at a strip 
with the Kubo-model parameters τ  =  1 ps, μc  =  1 eV are pre-
sented, and T  =  300 K and the width d  =  50 μm in free space 
with νhost  =  1, calculated numerically using the Nystrom-type 
algorithm.

At the inclined incidence the number of observed SP reso-
nances is larger than at the normal incidence, while in either 
case their peak values become smaller at higher frequencies. 
The most pronounced is the lowest-frequency resonance P1 at 
the normal incidence, although its full width at half-maximum 
(FWHM) is the largest, which indicates the smallest value of 
the associated Q-factor.

For better insight into resonances, we show in figure 2(b) 
a map of a normalized ECS as a function of the frequency 
and the incidence angle β for the same strip. Only the reso-
nances on the odd-index SP modes are excited at the normal 
incidence because of the symmetry of their natural fields with 
respect to the x-axis. In contrast, both the odd and even-index 
resonances appear under the inclined incidence. Note that 
under the edge-on incidence (β = 0) none of the resonances 
are excited due to the anti-symmetry of the SP-mode natural 
fields with respect to the y-axis, see below.

In figure 3, we present the in-resonance patterns of the total 
magnetic field in the near zone and of the scattered field in the 
far zone, at frequencies of 1.6 THz (a), 3.88 THz (b), and 5.49 
THz (c) for ν = 1.4host  for a graphene strip of d  =  50 μm; the 
other parameters the same as in figure 2.

The SP resonances can be interpreted as one-dimensional 
(1D) Fabry–Perot resonances formed by the reflections of 
the SP natural wave of a graphene layer from the strip edges. 
Indeed, it is visible that in each resonance an odd number of 
half-wavelengths of the above-mentioned natural SP wave of 
a graphene sheet match the strip width, and the hotspots of 
the SP field are only seen at the strip faces. This is behav-
iour typical of the Fabry–Perot mechanism, which leads to the 
characteristic equation,

( )β ψ+ =dexp i2 2 1,a
SP (6)

where ψ is associated with the phase of the reflection coef-
ficient of the SP wave from the strip edge (this value can be 
extracted from the fit of (8) to the actual resonance frequency 
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of the first-order mode, P1), and βSP is the complex-valued 
propagation constant of the SP wave.

The latter value can be obtained analytically using the 
resistive boundary condition (1) applied to the infinite sheet of 
graphene and, additionally, the demand of anti-symmetry on 
the magnetic field component Hz across the plane where the 
strip is located [20, 21] (note misprint in equation (14) of [21] 
where the power 2 should be corrected to  −2). The result is

[ ( ) ]β = −k Z Z1 4 / ,SP
0

2 1/2 (7)

where ( )ν ω π λ= = =k k k c/ 2 /0 host 0 . Equation  (6) is satis-
fied if

[ ( )]β λ π ψ= −d mRe .SP (8)

Then the corresponding natural frequencies of the Pm 
modes are associated with the odd-index roots ( )=m 1, 3, 5, ...   
of (8) or the even-index roots ( )=m 2, 4, ... , respectively.

3.1. Bulk refractive-index sensitivities and figures-of-merit

In the design of optical or THz-range sensors, two values 
characterizing their performance are met: The sensitivity and 
the FOM [13–15].

By definition, the bulk refractive-index sensitivity 
λ ν= ∆ ∆S /m

bulk
m host of the optical resonance of the mth order 

is given by the resonance wavelength shift λ∆ m obtained under 
the refractive index variation ν∆ host. The FOM is defined as 

( )= −SFOM FWHMm m
bulk 1, see [13–15]. Both values can be 

obtained numerically, after computing the ECS dependencies 
on the wavelength and the host-medium refractive index. Note 
that finding the FWHM values requires the use of the Fano-
shape fitting procedure applied to the ECS spectral depend-
ence (see appendix B).

However, besides that, it is interesting that the 
SP-resonances sensitivities can be estimated analytically with 
the aid of expressions (7) and (8), this was first noticed in [25]. 
We tried to derive more accurate expressions using the Kubo 
formula (A.2) instead of a simplified Drude formula used in 
[25]. Then the resonance wavelength of the mth SP mode is 
obtained as

( )λ
ν

=
−

−
d

m c
Z Z

2
Re 1 4 / ,m

host

1
0

2 (9)

where we denoted ψ π=c /1 . Now, one should keep in mind 
that the impedance Z is a function of the frequency and can 
be approximated in the following way by using the formulas 
(A.1)–(A.3) and taking into account only the intraband transi-
tions because of the small losses:

( ) ( )ω
λ

π µ
≈− = + + >µ−� ⎡

⎣⎢
⎤
⎦⎥Z

c
c

c

q k T k T
i ,

2
2 ln 1 e 0.k T

m
2

m
2

2 2

e
2

B

c

B

/c B

 (10)
This brings us to the following formula:

⎛
⎝
⎜

⎞
⎠
⎟λ

ν
=

−
dc

m c
2 .m

host 2

1

1/2

 (11)

Then, respectively, the sensitivity is

λ
ν ν

λ
ν

=
∂
∂

=
−

=S
dc

m c

1

2
,m

bulk m

host host

2

1

m

host
 (12)

where with good enough accuracy one can take =c 01 . 
Note that the last term in (12) looks exactly like the cor-
responding equation  (7) in [25], although the resonance 
wavelength (11) is different from (6) of [25] because we 
used the Kubo formula. From (12), one can see that the 
sensitivity of any SP mode is larger for smaller values of 
the host-medium refractive index. This circumstance makes 
chemo-sensing applications (such as hydrogen detection) 
especially promising.

Further, as one of the definitions of the quality 
factor is λ=Q /FWHMm m m (besides the more usual 

ω ω= −Q Re /2Imm m m). Then the FOM can be obtained as

Figure 2. (a) Normalized ECS for the H-polarized plane wave 
incident normally at a stand-alone graphene strip as a function of 
the frequency; (b) color map of the normalized ECS as a function 
of frequency and incidence angle for a graphene strip with a width 
d  =  50 μm.
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⎛
⎝
⎜

⎞
⎠
⎟

ν ν
= =

−
=

S
S Q

m c

dc

Q
FOM

FWHM

1

2 2
.m

m
bulk

m
m m

1

host 2

1/2
m

host
 (13)

Although analytical expressions for the SP-mode quality 
factors Qm are not available, they can be found, as previously 
mentioned, from the Fano fitting procedure; this can be called 
a semi-analytical evaluation.

As is visible from figures 2(a) and 4(a), all the resonances of 
ECSs are asymmetric Fano-shape (double-spike) resonances. 
This complicates the quantification of the linewidth of each of 
them. As a remedy, the extinction spectrum can be fitted with an 
analytical Fano formula [34] (see appendix B). The Fano  fitting 
parameters for ν = 1.4host  are presented in table  1 and the 
 corresponding fitted curve is also shown in figure 4(a) as dots. 
Note that refractive index close to 1.4 corresponds to a typical 
biosensing scenario of the water solution of proteins [13, 14].

Figure 4(a) shows the normalized (by 2d) extinction spectra 
for the H-polarized plane wave incident normally at a stand-
alone graphene strip (τ  =  1 ps, μc  =  1 eV and T  =  300 K) with 
a width d  =  50 μm for four different values of the refractive 
index of the host medium, νhost, calculated numerically via 
the Nystrom-type algorithm of (solid curves), and the corre-
sponding Fano fit for νhost  =  1.4 (dotted curve). Being visible, 
with the growth of the refractive index the resonance peaks 
shift down in frequency.

Figure 3. In-resonance total magnetic near-field patterns and scattered far-field diagrams for a graphene strip at frequencies 1.6 THz  
(a), 3.88 THz (b), and 5.49 THz (c) for ν = 1.4host  normal incidence. (a) P1 resonance, (b) P3 resonance, (c) P5 resonance.

Table 1. Fano fitting parameters (А0  =  0.02).

f (THz) (2π)−1Γ (THz) α A

P1 1.6 1.05 2.7 0.21
P3 3.86 0.3 3.88 0.2
P5 5.47 0.28 −0.15 −1.1

J. Phys. D: Appl. Phys. 49 (2016) 055105
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In figure 4(b) a map of the normalized ECS as a function of 
the frequency and medium refractive index is presented. This 
map along with the Fano fitting parameters enable us to find 
Sm

bulk and FOM of the SP resonances numerically.
Comparative data on the three plasmon resonances are 

collected in table 2. We present here the values of the bulk 
sensitivity and FOM calculated in two ways; both numeri-
cally from the data in figure 4(b) along with the Fano  fitting 
procedure; and analytically using the Kubo formula and 
expression (12) (for bulk sensitivity) or semi-analytically 
using the Kubo formulas and Fano fitting procedure (for 
the FOM). As can be seen, the sensitivity and FOM values 

obtained analytically and semi-analytically are 10 to 20% 
higher than their numerical counterparts. Besides, the 
highest bulk sensitivity is 60 μm RIU−1 for the P1 reso-
nance, although the FOM of the P5 resonance, 5.18 RIU−1, 
is more than 10 times larger than the FOM of the P1 reso-
nance, 0.49 RIU−1.

This is apparently because of the higher values of the 
Q-factors of the higher-order plasmon modes of the graphene 
strip in the THz range, which is conditioned by the larger 
number of the surface-current nulls along the strip width. 
These FOM values are quite comparable to the characteristics 
of noble-metal strip sensors in the optical range [13–15].

Figure 4. (a) Normalized ECS spectra of the graphene strip with a width d  =  50 μm immersed in media with different refractive index 
values. (b) Map of the normalized ECS as a function of the frequency and medium refractive index. The normal incidence of the plane 
wave is assumed.

Table 2. Bulk sensitivity and FOM of the P1, P3, P5 resonances.

FWHM (μm) 
(νhost  =  1.4)

Sm
bulk (μm RIU−1) 

(numeric.)
FOM (RIU−1) 
(numeric.)

Sm
bulk (μm 

RIU−1) (analyt.)
FOM [RIU−1] 
(semi-analyt.)

P1 122.8 60.0 0.49 66.9 0.55
P3 6.04 22.8 3.77 27.75 4.54
P5 2.8 14.5 5.18 19.8 7.07

J. Phys. D: Appl. Phys. 49 (2016) 055105
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4. Conclusions

Potential use of a micro-size graphene strip as a SP-resonance 
based bulk refractive index sensor in the THz frequency 
range was studied using a sophisticated numerical treatment 
of the associated singular IEs. This study was focused on 
the bulk refractive-index sensitivities and FOM values of the 
associated plasmon resonances. The primary plasmon mode 
P1 was found to be the most sensitive to the refractive-index 
changes among all the plasmon modes, although its FOM 
value was the lowest. Higher-order SP resonances displayed 
much higher FOM values explained by the higher Q-factors. 
These FOM values are approximately the same as for the 
localized SP resonances on the noble-metal strip in the 
optical range.

Appendix A. Graphene conductivity

Graphene conductivity is characterized applying the Kubo 
formula [1, 2, 28],

( ) (   ) ( )σ ω µ τ σ ω µ τ σ ω µ τ= +T T T, , , , , , , , , ,c intra c inter c (A.1)

( )

⎛

⎝
⎜⎜

⎡
⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤
⎦
⎥

⎞

⎠
⎟⎟σ

π ω τ
µ µ

=
+

+ + −−�

iq k T

i k T k T
2 ln 1 expintra

e
2

B

2 1
c

B

c

B
 (A.2)

( ) ( ) ( )
( ) ( )

( )

∫σ
ω τ

π ω τ

µ

=
+ ∂ − − ∂

+ −
∂

=
−

+

− ∞

−

−

� �

⎛

⎝
⎜

⎞

⎠
⎟

⎡
⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤
⎦
⎥

q f E f E

E
E

f E
E

k T

i i

i 4 /
,

exp 1 ,

inter
e
2 1

2 0
d d

1 2 2

d
c

B

1

 

(A.3)

where ( )f Ed  is the Fermi–Dirac distribution, ω= �E  is the 
energy, qe is the elementary charge, � is the reduced Planck’s 
constant, and kB is the Boltzmann constant. The first term in 
(A.1) relates to the intraband contributions of graphene, which 
usually dominate in the low THz range, and the second term 
relates to the interband contributions of graphene, which 
become more important at higher frequencies. It should be 
noted that the interband conductivity σinter can be approxi-
mated by the following simpler formula under conditions 

µ�k TB c  [29]:

∣ ∣ ( )
∣ ∣ ( )

σ
π

µ ω τ
µ ω τ
− +
+ +

−

−�
�

�

�

⎛

⎝
⎜

⎞

⎠
⎟

q k Ti

4

2 i

2 i
.inter

e
2

B

2
c

1

c
1

 (A.4)

Analysis shows (see the plots in figure 1(b)) that graphene 
behaves almost like a frequency-independent resistor, with a 
significant purely inductive reactance. It is observed that an 
increase in the chemical potential μc leads to lower losses 
and an up-shift of frequencies, where graphene displays more 
inductive behavior. The latter feature makes this material 
appropriate for the propagation of complex SP waves, which 
are the transverse magnetic waves traveling along the sheet of 
graphene.

Appendix B. Fano fitting model

In contrast to classical Lorentzian resonances, the Fano reso-
nance exhibits a distinctly asymmetric spectrum shape. As 
found by Fano, it can be fitted with the analytical formula [33],

( )
( )
( ) ( )∑ω
α ω ω
ω ω

= +
Γ + −

− + Γ
W A A

/2

/2
,

j
j

j j j

j j
ext 0

2

2 2 (B.1)

where ωj is the frequency, Γj describes the linewidth of the 
resonant peak (or FWHM of the corresponding resonance), 
αj is the phenomenological shape parameter (or Fano asym-
metry parameter), and A A, j0  are the fitting constant factors. 
Note that in these notations the quality factor of the jth mode 
is ω= ΓQ /j j j.
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