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Our objective is the assessment of the accuracy of a conventional finite-difference time-domain (FDTD) code in
the computation of the near- and far-field scattering characteristics of a circular dielectric cylinder. We excite
the cylinder with an electric or magnetic line current and demonstrate the failure of the two-dimensional
FDTD algorithm to accurately characterize the emission rate and the field patterns near high-@ whispering-
gallery-mode resonances. This is proven by comparison with the exact series solutions. The computational er-
rors in the emission rate are then studied at the resonances still detectable with FDTD, i.e., having @-factors

up to 103. © 2008 Optical Society of America

OCIS codes: 000.4430, 000.3860, 220.0220, 230.5750, 290.0290.

1. INTRODUCTION

Spherical, toroidal, circular-cylindrical, and some other
open dielectric resonators are known to support so-called
whispering-gallery-mode (WGM) natural oscillations
[1,2]. The famous features of WGMs are tight confinement
of their inner field near the resonator boundary and “ex-
ponentially high” radiation @-factors. Circular-disk di-
electric resonators are the key components in many ad-
vanced optical circuits including filters, couplers, laser
cavities, etc. [1-3]. This is due to their ability to support
the WGM-like natural oscillations provided that the disk
thickness is not too small and the radius is much larger
than the wavelength. Among new configurations not men-
tioned in [1,2], there are thin disks embedded into a
photonic-crystal matrix [4], coupled into a cyclic photonic
molecule [5], and built into a coupled-resonator optical
waveguide [6]. These coupled microresonators may pro-
vide additional advantages such as further lowering of
the thresholds of lasing [7,8], improvement of emission di-
rectionality [4], and low-loss bending [9].

The available lithographic, epitaxial, and etching tech-
nologies enable controlled fabrication of thin microdisk
resonators of a given size and thickness. Still, due to fine
nature of the WGM effects exploited in the optical and
photonic devices, their accurate preliminary modeling
may provide great savings in the cost and time of design.

Among the available numerical techniques used in
computational photonics is the finite-difference time-
domain (FDTD) method [10,11]. Although FDTD is well
known as a powerful and flexible tool, it has drawbacks
also widely discussed in literature, namely, the numerical
dispersion, staircase boundary approximation, and back-
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reflection from the borders of the computational window.
These drawbacks become critical if physical boundaries of
the studied object do not coincide with the mesh and/or if
high-@ resonances are involved [12-14]. Both problems
are present if a WGM resonator is considered.

It is known that a thin microdisk resonator can be
studied in 2D formulation with its bulk refractive index
replaced by the effective index provided that the radius is
considerably larger than the thickness and the wave-
length [15]. This is because the effective index is taken as
the normalized propagation constant of one of the guided
modes on the infinite dielectric slab of the same thickness
and bulk refractive index [16]. Therefore accurate 2D
modeling of WGMs is an important task in computational
photonics. Reduction of dimensionality significantly re-
duces the time and memory consumption for FDTD algo-
rithms, and thus enables one to choose denser meshes
and smaller time steps. This may improve the accuracy of
simulations within reasonable timing [17,18]. Addition-
ally, various techniques have been proposed to improve
the performance of FDTD solvers (see, e.g., [10,19] and
references therein). As a result, reasonable agreement be-
tween the FDTD and the experiment is often reported
[18]. Assessment of the FDTD algorithms accuracy per-
formed by comparison with numerical algorithms based
on different techniques is also available in literature, e.g.,
[12,14]. Nevertheless, the domain of trusted applicability
for the FDTD solutions is still not completely clear be-
cause in most cases they have been compared with other
approximate solutions to the Maxwell equations that
have no built-in criteria of accuracy. Exception is the pa-
per [12], where FDTD and method-of-moments (MoM) re-
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Fig. 1. (Color online) Normalized total emission rate of the line
source illuminating quartz (ye=2.0) circular resonator computed
by the FDTD method and Series (thick solid curves): (a)
E-polarization and (b) H-polarization. The family of four FDTD
curves is computed with different meshes. The values of M for
each FDTD curve are represented by the monotonic lines of cor-
responding types.

sults were compared with Mie-type series data for the
backward scattering cross-sections of the magnetodielec-
tric hollow circular cylinder illuminated by the normally
incident plane electromagnetic wave. Conclusions of [12]
were far from optimistic: in fact, both MoM and FDTD
showed 100% and larger errors in the vicinity of sharp
resonances that were associated with the modes that
were still not truly WGM ones.

2. OUTLINE OF THE SOLUTION

To shed further light on this issue and specifically target
WGMs, we study numerically the near- and far-field char-
acteristics of a single dielectric circular cylinder illumi-
nated by a parallel line source (point source in 2D). We
compare the results computed by the conventional FDTD
code and by the analytical series solution. This enables us
to assess the accuracy of conventional FDTD code in the
vicinities of high-@ WGM resonances. We also compute
the complex-valued natural frequencies of the WGMs to
estimate the associated radiation @-factors. This is done
by means of an iterative gradient-type algorithm applied
to the rigorous characteristic equation,

J(kare)H., (ka) — \eH,,(ka)J ! (ka\e) =0, (1)

where o/,,(-) and H,,(-) are the Bessel and Hankel func-
tions, m=0,1,..., the prime denotes the differentiation in
argument, k& is the free-space wavenumber, «a is the cylin-
der radius, and ¢ is its dielectric constant.
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Our in-house 2D FDTD algorithm has been developed
based on the standard method proposed by Yee [20]. The
Cartesian mesh has been used for the computational
space surrounded with the perfectly matched layers
(PML) [21]. As a primary source, we use a line current
modulated in time with a Gaussian pulse and set the pa-
rameters of PML that provide the normal backreflection
from the layer boundary below —50 dB for the entire con-
sidered frequency range. The time is discretized in accor-

dance to the Courant stability criterion. (*) see comment below

As reference data, we take the analytical solution built
by using the separation of variables. This solution has the
form of infinite series whose coefficients depend on the cy-
lindrical functions. As they can be computed with ma-
chine precision, the accuracy of the series algorithm is
controlled by the truncation order, N, provided that it ex-
ceeds ka \E, We keep N=ka \«"g+ 20; thus the accuracy is at
least 1078,

3. NUMERICAL RESULTS

First, we consider a circular dielectric cylinder made of
quartz (\e=2.0) excited by an electric or magnetic line
current located at the distance equal to the resonator ra-
dius, a, from its boundary. Figure 1 presents the total
power radiated by the line source in the presence of a cyl-
inder normalized by the same value for a stand-alone line
source,

Po=2/Zok (E-pol), P,=2ZJk (H-pol), (2)

versus the normalized frequency (Z is the free-space im-
pedance). This quantity is the same as the normalized
spontaneous emission rate in the source plus cavity sys-
tem. In the analytical solution, it is reduced to the series
with known coefficients. In the FDTD case, we computed
the transient field values on auxiliary contour between
the cylinder and the boundary of the computational win-
dow and then integrated them into the total radiated
power.

Results obtained with the FDTD and series algorithms
relate to the left-side scale in Fig. 1, and the FDTD mesh
size parameter, M, relates to the right-side scale. The
thick solid line represents the reference series solution,
while the family of four thin curves of different types is
obtained by the FDTD algorithm with different mesh
sizes taken as \,/M, where \, is the wavelength in mate-
rial. With a transient excitation, the FDTD method pro-

Fig. 2. (Color online) Normalized near-field maps of quartz cir-
cular resonators excited by the E-polarized line source: (a) Series
(ka=6.543) and (b) FDTD (ka=6.600). The corresponding
WGM-E ; resonance is indicated by the triangle in Fig. 1(a).
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Fig. 3. (Color online) Same as in Fig. 1 but for a silicon resona-
tor (\e=3.42).

vides results over a wide frequency range in a single cal-
culation. Although this is a great benefit compared to the
frequency domain methods, the accuracy of results differs
within that range. It depends on the varying mesh size,
which is indicated by four monotonically lowering curves
of the corresponding types.

Periodic spikes, well seen in Fig. 1, correspond to the
WGM-type E,, ; and H,, ; resonances. This is confirmed
by their periodicity and the characteristic in-resonance
near-field patterns presented in Fig. 2 for the E-case. In
this notation, the indices indicate the number of the field
function variations along the azimuth and the radius, re-
spectively. As known, the higher the resonant frequency
(equivalently, the denser the material and the larger the
m), the higher the radiation quality factor @. For the
WGM resonances in the lossless cylinder (Im\s‘;:O), it be-
haves as @ ~exp(ye Re ka), while for non-WGM ones it
behaves as @~ = Re ka.

Comparison of the curves obtained by two methods
shows that the FDTD algorithm displays a regular shift of
the whole curve to the higher frequencies. This can be ex-
plained by the staircase approximation of the cylinder
boundary that is intrinsic for all conventional FDTD algo-
rithms, so that actual domain filled in with dielectric is
slightly smaller that the circle of radius a. Because of this
shift, the FDTD algorithm becomes especially inaccurate
near the resonance frequencies. The shift can be reduced
to a certain value by choosing a denser mesh. However, it
cannot be eliminated completely and the minimum acces-
sible error is apparently determined by the backreflec-
tions from the virtual boundary of the computational win-
dow; thus, it depends on the type of the nonreflecting
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boundary condition used and the shape and size of the
computational window. This conclusion is in line with the
earlier studies, e.g., see [12,22].

The curves in Fig. 3 are similar to Fig. 1 but computed
for the line-source excited cylinder made of silicon (\s‘;
=3.42). Here, the radiation @-factors of WGM-type natu-
ral modes are larger, and accurate characterization of cor-
responding resonance spikes in the spontaneous emission
rate with FDTD becomes troublesome. Note that for a sili-
con resonator higher-radial-order WGMs are also excited.
Those detectable in Fig. 3 are of the first to the third order
radial modes that are confirmed by the in-resonance near-
field patterns presented in Fig. 4. Although the FDTD
patterns in Figs. 2(b) and 4(b) have been computed at the
corresponding (shifted) frequencies and with a dense
mesh (M =50), they are still quite inaccurate compared to
the exact ones computed by the series algorithm (Figs.
2(a) and 4(a), respectively).

This reveals that, in principle, the spikes associated
with higher-@ resonances experience more difficulties
when computed with FDTD algorithms. Therefore it is
quite important to have a priori information about the
quality factors of natural modes, which can be involved in
the solution of the considered problem in order to foresee
the errors potentially entering the numerical solution. In
general, this can only be done by solving the correspond-
ing eigenvalue problem that may be difficult, especially
for arbitrarily shaped resonators.

Here, note that FDTD algorithms are not able to solve
the eigenvalue problems in a direct manner; this has been
emphasized in [3] in relation to the lasing modes. Instead,
the FDTD method always needs a pulsing source placed
at some point inside or near a cavity and operates with
the output in the form of the time-domain signal com-
puted at some other point (see, e.g., [23]). Further the
Q@-factors of detected natural modes are extracted from
that signal by using Fourier transform. Therefore the re-
sult depends on the good or bad choice of the source and
observation points and on the accuracy of numerically

performed Fourier transform, to mention only the obvious

factors. Such an approach suffers from too many errors
and may give only a rough estimation of the associated
Q@-factors; however, it still finds wide use in optical simu-
lations.

The scattering analysis seems to be less subject to such
errors. However, as we will see below the matter is worse

(b)

Fig. 4. (Color online) Normalized near-field maps of the silicon
circular resonators excited by a line H-polarized current: (a) Se-
ries (ka=4.625) and (b) FDTD (ka=4.645). The corresponding
WGM-Hjg, resonance is indicated by the triangle in Fig. 3(b).
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Fig. 5. (Color online) Normalized frequency shift extracted from
comparison between FTDT and Series solutions for the WGM-
related spikes in the normalized emission rate observed in Fig. 1
for the quartz resonator versus the resonances @-factor. The fam-
ily of four curves is for different mesh sizes.

than it is normally assumed; FDTD apparently fails to de-
tect the contribution of natural-mode spikes that have
Q-factors larger than some threshold values.

In Figs. 5 and 6, we present the behavior of the FDTD
computational errors in the frequency locations and in the
absolute values, respectively, of the spikes of the normal-
ized spontaneous emission rate corresponding to the
WGM resonances visible in Fig. 1, i.e., for the quartz cyl-
inder. They are presented as (discrete-valued) functions of
the @-factors of associated natural modes obtained by
solving Eq. (1). One can see that as soon as the radiation
Q-factor exceeds 102, both errors start growing propor-
tionally to the @-factors.

Further, we have tried to extend the analysis of the
FDTD errors to the resonances on the WGMs with higher
Q-factors. As an example, exact radiation @-factors of the
modes having two field variations in radius, i.e.,
WGM-E,, , and WGM-H,, 5, with m=8—11 are presented
for the silicon cylinder in Table 1. We have found, how-
ever, that our FDTD algorithm is not capable of detecting
the resonances on the WGMs with @-factors higher than
103, Therefore the higher-Q resonances, for instance,
those on the WGM-E,, ; and WGM-H,, ; modes that are
observed in Fig. 3 on the curves computed via the series,
are missing on all the FDTD curves.
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Fig. 6. (Color online) Computation errors of the FDTD algo-
rithm for the normalized emission rate extracted from compari-
son between FTDT and Series solutions presented in Fig. 1 for
the quartz resonator versus the resonances @-factor. The family
of four curves is for different mesh sizes.
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Table 1. @-Factors of the (m,2) WGMs in a Silicon
Circular Resonator

WGM-E,, , WGM-H,, ,
m ka Q m ka Q

9 4.30093 7862.90 8 4.62489 7380.38
10 4.65906 30,946.36 9 4.98161 31,393.24
11 5.01269 127,414.73 10 5.33371 137,516.08

Note that radiation @-factor values of the same range,
i.e., several thousand, are characteristic not only of the
WGM oscillations in the uniform circular or spherical
cavities of moderate optical size but also of the WGMs in
nonuniform discrete Luneburg lenses [24] and printed an-
tennas on spherical substrates [25], bow-tie modes in the
stadium cavities [26], half-bow-tie modes in the extended
hemielliptic lenses [27,28], and many other important
configurations. Therefore corresponding resonances in

their scattering characteristics are not accessible with

conventional FDTD codes and need finer simulation tools.

(*) see comment below

4. CONCLUSION

The accuracy of the FDTD algorithm as to the character-
ization of high-@ WGM resonances in the emission rate of
a line source near a circular cylindrical resonator has
been tested against the exact series solution. Comparison
of numerical results confirmed reasonable accuracy of
FDTD when applied out of high-@ WGM resonances, as
well as a rapid growth of the computational error near
such resonances. Denser meshing reduces these errors to
the level determined apparently by the type of absorbing
boundary conditions used, shape and size of computa-
tional window, and other details of the FDTD code, but
does not eliminate them. The growth of the errors propor-
tionally to the natural-mode @-factors has been demon-
strated. Finally, a complete failure of conventional FDTD
code in the detection of WGM resonances with radiation
Q-factors significantly higher than 10% has been observed.

(*) see comment below
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