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TE-Wave Penetration Into Finite-Thickness Slotted
Circular Cylinder With Lossy and Lossless

Inner Coatings
Andriy E. Serebryannikov, Member, IEEE, and Alexander I. Nosich, Fellow, IEEE

Abstract—A technique is developed to study the penetration of
a TE-polarized plane wave into perfectly electric conducting cylin-
drical cavities with multiple apertures, taking into account wall
thickness and multilayered inner filling. It is based on an integral
representation of the tangential electric field on the slot apertures
and the Galerkin method using weighted Gegenbauer polynomi-
als as basis functions. Extensive parametric studies are performed
to reveal the main features of the penetrated field in a wide fre-
quency range for single- and double-layer coatings of three types.
In particular, the effect of geometric and material parameters on
the appearance and attenuation of the cavity resonances is studied.
The strongest effect of cylinder thickness on the penetrated field is
observed in the vicinity of the peaks of the frequency dependence
and must be taken into account, even if the thickness is small.

Index Terms—Cavity-backed aperture, coating, Galerkin
method, penetrated field, plane wave.

I. INTRODUCTION

S INCE THE mid-1970’s, plane wave scattering by and pen-
etration into the cavity-backed apertures have been exten-

sively studied in connection with various applications, including
the development of shielding enclosures, enhancing compatibil-
ity of electromagnetic systems, control of radar cross section,
and so on. Associated electromagnetic problems have been con-
sidered for perfectly electric conducting (PEC) circular (e.g.,
[1]–[8]), rectangular [9], and arbitrary-shaped [10] and [11]
slotted cylindrical shells having zero thickness, by using di-
rect discretizations of integral equations (IEs) [1]–[3], [8]–[11],
and semianalytical approaches (e.g., method of analytical reg-
ularization) [4]–[7]. Much less attention has been paid to the
structures with finite thickness. In particular, scattering of a
TM-polarized wave by a thick circular cylinder with a single
slot has been studied in [12]. Although the penetrated field has
not been considered in [12], the model used therein, which is
based on the mode-matching technique, allows doing this. A
similar approach has been exploited in [13], where scattering by
PEC cylinder with longitudinal corrugations has been studied.
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Besides, general approaches of scattering by arbitrary-shaped
cylinders can be applied to calculate the penetrated field. Among
those, it is worth mentioning the approach based on IE for the
current distribution on the scatterer surface [14], as well as the
approach based on the combination of IE and finite element
method [15].

A lot of attention has been paid to the slotted structures with
inner or/and outer coatings made of lossless and lossy materials
(e.g., [5]–[7]). In [5] and [6], the effect of inner and outer lossy
coatings on the far-zone field characteristics has been studied.
In [7], penetration of the TM-polarized wave into a circular
cylinder with multiple apertures, which is either embedded into
or limiting a double-layer coating, has been considered at several
fixed frequencies. Penetration of a TE-polarized wave inside a
special structure consisting of several concentric slotted circular
cylinders of zero thickness was a subject of study in [16].

The main motivation of this study is to control electromag-
netic field penetration into multiple cavity-backed apertures.
In this paper, we focus on the penetration of the TE-polarized
plane wave into a PEC circular cylinder with finite thickness
and several apertures. The mathematical treatment is given in
Section II. It is based on the modal expansions of the scattered
and penetrated fields and on an integral representation of the
tangential electric field on the slot apertures. Discretization is
performed using the Galerkin method with weighted Gegen-
bauer polynomials as basis functions. The developed model sets
no limitation on the slot width and takes into account a multi-
layered inner filling.

Thanks to the circular boundaries of the PEC shell and inner
layers, our approach avoids discretization of a volume domain
that is required in the method from [15]. Instead, it leads to
integral-type relations on the surface of the slot apertures dis-
cretized with a proper account of the edge behavior. This is
similar to [7], where IEs were obtained for the currents on the
infinitely thin strips (circular segments), and field behavior at
the edges was taken into account. Note that in the previous stud-
ies of finite-thickness circular geometries [12]–[14], the edge
effect was neglected. Besides, our model is free of restriction
of [13], where the slots were located periodically. In Section III,
we present numerical simulations performed for finite-thickness
cylinders with single- and double-layer coatings of three types.
The emphasis is on the effect of shell thickness on the penetrated
field and on that how the penetrated field can be enhanced due to
the cavity resonances and how to compensate this enhancement.
Time dependence eiωt is assumed and suppressed throughout
this paper.
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Fig. 1. Slotted circular metallic cylinder with finite thickness and inside
coating.

II. THEORY

Fig. 1 shows the cross section of a PEC finite-thickness
circular cylinder with N sectorial slots. The angular width
and angular coordinate of the r th slot center are denoted by
φr and βr , respectively, r = 0, 1, . . . , N − 1. The inner and
outer radii of metallic shell are denoted by ρ2 and ρ3. A
multilayered filling may contain both lossy and lossless lay-
ers. In general, it consists of M layers (ρ1s ≤ ρ ≤ ρ1,s+1, s =
1, 2, . . . ,M, ρ1,M +1 = ρ2) with the relative permittivity ε1s

and permeability µ1s . Some of these layers are allowed to
show ε = ε0 = 1 and µ = µ0 = 1 which correspond to the free
space. The most inner (circular) subdomain (s = 0, ρ ≤ ρ11)
may be metallic or dielectric. Each slot domain (ρ2 ≤ ρ ≤
ρ3, βr − φr/2 ≤ φ ≤ βr + φr/2) is filled with a lossy or loss-
less material having parameters ε2r and µ2r . The incidence
angle φinc = 0 is assumed throughout the paper, except for the
case when the reciprocity theorem is verified.

To satisfy the Helmholtz equation, the Hz component inside
the cylinder inner layers (domain I) is expressed in terms of the
series

HIs
z =

∞∑
m=0

(Ac
mscosmφ + As

mssinmφ)Jm (k1sρ)

+ (Bc
mscosmφ + Bs

mssinmφ) Ym (k1sρ). (1)

Here, s = 0, 1, . . . M, ρ1s ≤ ρ ≤ ρ1,s+1, ρ1,M +1 = ρ2, ρ10 =
0, k1s = k0

√
ε1sµ1s is the wavenumber of the sth layer, k0

is the free-space wavenumber, Jm and Ym are the mth-order
Bessel and Neumann functions, and the upper indices c and s
indicate the relation of unknown coefficients to the cosine and
sine dependence in φ, respectively. In the case of the central
subdomain (s = 0), Bc

m0 = Bs
m0 ≡ 0. If it is filled with metal,

Bc,s
m1 = −Ac,s

m1J
′
m (k11ρ11)/Y ′

m (k11ρ11), where the prime de-
notes the derivative with respect to the argument.

In each slot (domain II)

HII(r)
z =

∞∑
n=0

[DnrJνn r
(κ2r ρ) + EnrYνn r

(κ2r ρ)]

×cos[νnr (φ − βr + φr/2)] (2)

where κ2r = k0
√

ε2rµ2r and νnr = πn/φr . Finally, in the outer
space (domain III) the scattered field series has to match the

condition of radiation, hence

HIII
z = exp(−ik0ρcosφ)

+
∞∑

m=0

(V c
m cosmφ + V s

m sinmφ) H(2)
m (k0ρ) (3)

where H
(2)
m is the mth-order second-kind Hankel function and

i =
√
−1.

To connect the unknown coefficients Ac,s
mM ,Bc,s

mM ,Dnr , Enr ,
and V c,s

m with the incident wave, we use the boundary con-
ditions for Hz and Eφ at ρ = ρ2, ρ3. The coefficients Ac,s

ms

at s < M and Bc,s
ms at s ≤ M are excluded from consid-

eration by using the boundary conditions at ρ = ρ1s and
the orthogonality of the trigonometric functions. According
to the Galerkin method, the angular dependence of Eφ on
both apertures of each slot (ρ = ρ2, ρ3, βr − φr/2 ≤ φ ≤ βr +
φr/2, r = 0, 1, . . . , N − 1) is presented as follows:

EI
φ(ρ2, φ) = E

II(r)
φ (ρ2, φ) = iW0

∞∑
j=1

ajrΘj (xr ) (4)

EIII
φ (ρ3, φ) = E

II(r)
φ (ρ3, φ) = iW0

∞∑
j=1

bjrΘj (xr ). (5)

Here, W0 is the free-space impedance, ajr and bjr are unknown
coefficients, Θj are the basis functions, and xr = φ − βr .

Using the orthogonality of the sine and cosine functions
and the relation between Eφ and Hz , we express the co-
efficients Ac,s

mM ,Bc,s
mM ,Dnr , Enr , and V c,s

m through X̃Ic,s
Lr =∑∞

j=1 cjrΩ
Ic,s
jr and X̃II

Lr =
∑∞

j=1 cjrΩII
jr . Here, L = 2 and L =

3 correspond to ρ = ρ2 and ρ = ρ3, respectively, cjr means ei-
ther ajr (L = 2) or bjr (L = 3),ΩIc,s

jr =
∫

αr
Θj (xr )Ψc,s

m (xr +
βr )dxr , ΩII

jr =
∫

αr
Θj (xr )cos[νnr (xr + φr/2)] dxr , where αr

is the aperture of the r th slot, so that −φr/2 ≤ xr ≤
φr/2,Ψc

m (y) = cos(my), and Ψs
m (y) = sin(my).

Substituting the obtained coefficients into (1)–(3), using
the field continuity at the slot apertures, that is, conditions
HI

z (ρ2, φ) = H
II(r)
z (ρ2, φ) and HIII

z (ρ3, φ) = H
II(r)
z (ρ3, φ),

and applying the Galerkin method, we arrive at the following
set of linear algebraic equations:

∞∑
j=1

N −1∑
s=0

{
δs
r

∞∑
n=0

Λnr

(
ajrϑ

(+)
nr − bjr τ

(+)
nr

)

− ajshjslr (T ) − bjshjslr (R)

}
= elr (6)

∞∑
j=1

N −1∑
s=0

{
δs
r

∞∑
n=0

Λnr

(
ajrϑ

(−)
nr − bjr τ

(−)
nr

)

+ ajshjslr (T ) − bjshjslr (R)

}
= elr (7)

where δs
r is the Kronecker delta, r = 0, 1, . . . , N − 1,

l = 1, 2, . . . , ϑ
(±)
nr = θPnr ± Unr , θ = ρ2/ρ3, and τ

(±)
nr =
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Qnr ± Pnr [see (25)–(27)]. The factors Λnr , hjslr , and elr are
given by

Λnr =
(
2 − δ0

n

)
W0Fjrlr

/
(φrW2r ) (8)

hjslr (X) =
∞∑

m=0

ςm Xm

[(
ΩIc

jsΩ
Ic
lr + ΩIs

jsΩ
Is
lr

)
cos(mγrs)

+
(
ΩIc

jsΩ
Is
lr−ΩIs

jsΩ
Ic
lr

)
sin(mγrs)

]
(9)

elr =
∞∑

m=0

(
2 − δ0

m

)
(−i)m Sm

×
[
ΩIc

lr cos(mβr ) − ΩIs
lr sin(mβr )

]
. (10)

Here, γrs = βs − βr , ςm = (2 − δ0
m )/(2π) if X = R and

ςm = (2 − δ0
m )W0/(2πW1M ) if X = T , where W1M means

impedance of M th layer. Fjrlr = ΩII
lrΩ

II
jr in (8) and ΩIc,s

js in
(9) and (10) depend on the type of basis functions used in (4)
and (5). To adequately take into account the field behavior at
the edges, we use the weighted Gegenbauer polynomials as the
basis functions

Θjr (xr ) = (φr/2)2ηΛrG
1/2+η
j−1 (2xr/φr ) (11)

where G
1/2+η
j−1 are the Gegenbauer polynomials of the (j − 1)th

order and Λr = [1 − (2xr/φr )2]η is the weight factor [17]. The
sets of even and odd Gegenbauer polynomials are orthogonal
with the weight factor, which takes into account the Meixner
condition at a rectangular edge in explicit form if setting η =
−1/3 [18]. The interval of the orthogonality is matched with
a slot aperture. The corresponding closed-form expressions for
Fjrlr and ΩIc,s

js can be obtained using table integrals. They are
given, within normalization constant, by (11)–(15) from [19].

Information about the radial geometry of domains I and III is
contained in the coefficients

Rm = H(2)
m (k0ρ3)

/
H(2)′

m (k0ρ3) (12)

Sm = Jm (k0ρ3) − J ′
m (k0ρ3)Rm (13)

Tm = Im (k1M ρ2)/I ′m (k1M ρ2). (14)

Here

Im (y) = Jm (y) − Km Ym (y) (15)

where the coefficient Km = −Bc,s
mM /Ac,s

mM takes into account
the multilayered interior of the cylinder at ρ ≤ ρ2. To calculate
Km in the case of M > 1, we apply the recurrent formulas

B̂m,s+1 = usÂms + wsB̂ms − Âm,s+1 (16)

fsÂms + gsB̂ms = ys+1Âm,s+1 (17)

where Âms = AmsJm (k1sρ1s) and B̂ms = BmsYm (k1sρ1s),
the upper index c or s is omitted, and the coefficients
us, ws, ys+1, and fs are given by

us = Jm (zs,s+1)/Jm (zss) (18)

ws = Ym (zs,s+1)/Ym (zss) (19)

ys+1 = −2/[πzs+1,s+1Jm (zs+1,s+1)Ym (zs+1,s+1)] (20)

fs = ũsWs/Ws+1 − usY
′
m (xs+1,s+1)/Ym (xs+1,s+1) (21)

with zs,s+1 = k1sρ1,s+1 and ũs = J ′
m (zs,s+1)/Jm (zss). Co-

efficients gs are obtained from (21) by replacing fs with
gs, us with ws and ũs with w̃s = Y ′

m (zs,s+1)/Ym (zss). Be-
cause B̂m1/Âm1 is known from the boundary conditions at ρ =
ρ11, Âm2/Âm1 is first calculated from (17). Then, B̂m2/Âm1

is calculated from (16), and finally, B̂m2/Âm2 is obtained. This
procedure is repeated until s reaches s = M . As a result, we
obtain

Km = −B̂mM Jm (k1M ρ1M )/[ÂmM Ym (k1M ρ1M )]. (22)

Once the coefficients ajr and bjr are found from (6) and
(7), the field in any domain can be calculated. The coefficients
needed to calculate the penetrated field are given as

Ac,s
mM = ςm

∞∑
j=1

N −1∑
r=1

ajr

[
Ωc

jrΨ
c,s
m (βr )

− pc,sΩs
jrΨ

s,c
m (βr )

]/
I ′m (k1M ρ2) (23)

and

Bc,s
mM = −Km Ac,s

mM . (24)

In (23), ςm is the same as in (9) at X = T, pc = 1, and ps = −1.
To calculate the coefficients Ac,s

mM and Bc,s
mM at s < M , one

should again use (16)–(21) modified in such a manner that B̂ms

is excluded from either (16) or (17).
The radial geometry of the slots is taken into account in (6)

and (7) by the factors

Unr = Zνn r
(κ2r ρ2, κ2r ρ3)/Z̃νn r

(κ2r ρ2, κ2r ρ3) (25)

Pnr = 2/[πκ2r ρ2Z̃νn r
(κ2r ρ2, κ2r ρ3)] (26)

Qnr = Zνn r
(κ2r ρ3, κ2r ρ2)/Z̃νn r

(κ2r ρ2, κ2r ρ3) (27)

where Zτ (z1, z2) = Jτ (z1)Y ′
τ (z2) − Yτ (z1)J ′

τ (z2) and Z̃τ

(z1, z2) = d
dz [Zτ (z, z2)]|z=z1 . Calculation of these coefficients

can be simplified if cylinder is thin and/or slots are narrow as
compared with the wavelength. Assume ν1r = π/φr � 1 and
1 − (ρ2/ρ3)

ν1r � 1. Then, using the large-order asymptotics
of cylindrical functions [20] and applying the Taylor series ex-
pansion to the obtained formulas, we obtain (n > 0)

Qnr + Pnr ≈ −2x2
3r

/(
δrν

2
nr

)
(28)

θPnr + Unr ≈ −2x2rx3r

/(
δrν

2
nr

)
(29)

Qnr − Pnr ≈ −δr/2 (30)

θPnr − Unr ≈ δrx2r /(2x3r ) (31)

where x2r = κ2r ρ2, x3r = κ2r ρ3, and δr = x3r − x2r . We re-
fer to these expressions as the narrow-slot–thin-wall (NSTW)
approximation.

III. NUMERICAL RESULTS AND DISCUSSION

The extensive numerical simulations have been performed
using the equations obtained in Section II, for the dielec-
tric fillings of three types: single-layer lossy coating made of
poly-2.5-dichlorostyrene (ε11 = 7.3, µ11 = 0.91 − 0.32i) [21],
single-layer lossy coating made of shellac, natural XL (ε11 =
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Fig. 2. On the validation of the computer code. (a) Tangential elec-
tric field at ρ = ρ3 for two structures with the double-layer coating at
k0ρ3 = 5.26, ρ2/ρ3 = 0.8, ρ12/ρ3 = 0.75, ρ11/ρ3 = 0.7, β1 = π, β2 =
5π/3, φ1 = φ2 = π/3 (solid line), βr = πr/2, φr = π/9, r = 0, 1, 2, 3
(dotted line). (b) Error of the reciprocity theorem for the structure with the
same parameters as for the solid line in (a) (βr (1) = βr ), φinc

(1)
= φo

(1)
=

0, φinc
(2)

= φo
(2)

= π, βr (2) = βr (1) − π, ρo
(1)

/ρ3 = ρo
(2)

/ρ3 = 0.71 (solid
line) and 0.31 (dotted line). (c) Surface current on the outer surface of noncoated
cylinder with N = 1, β0 = π , and φ0 = π/3 obtained using our method (lines)
and MFIE from [23, pp. 45–49] (circles).

3.45 − 0.25i, µ11 = 1) [22], and double-layer lossless coat-
ing whose layers are both of the same thickness and show
ε11 = 1.5, µ11 = 1, ε12 = 2.5, and µ12 = 1.5 [7]. For conve-
nience, we further refer to these coatings as the magnetic,
electric, and double-layer coatings, respectively. The slots are
assumed to be filled by the same material as the layer with
s = M (ε2r = ε1M , µ2r = µ1M for all r). The most inner do-

main (ρ ≤ ρ11) is assumed to be vacuum (ε10 = ε0, µ10 = µ0).
Note that the effect of the coatings of the two first types on the
far-zone characteristics of the field scattered by a PEC cavity
with a single aperture has been studied in [5] and [6] for both
TE and TM polarizations, in a wide frequency range. In [7],
effect of the coating of the third type on the TM-wave penetrat-
ing through multiple apertures has been computed for several
fixed frequencies. In these studies, zero thickness of the shell
was assumed.

To validate the developed computer code, we checked the
boundary condition for Eφ at ρ = ρ2, ρ3, and errors of the reci-
procity theorem applied to the penetrated field. A good satisfac-
tion of the boundary condition is observed in a wide frequency
range. As an example, Fig. 2(a) shows |Eφ | at ρ = ρ3 for two
sample structures. Fig. 2(b) presents typical frequency depen-
dence of the relative error in the reciprocity theorem calculated
as

δRT =
∣∣∣1 − hz

(
ρo
(1), φ

o
(1), φ

inc
(1)

) /
hz

(
ρo
(2), φ

o
(2), φ

inc
(2)

)∣∣∣
(32)

where hz = |Hp
z |/|H inc

z | is the ratio of the penetrated and inci-
dent fields, ρo

(1) = ρo
(2) and φo

(1),(2) are the coordinates of two

observation points, and φinc
(1),(2) are the incidence angles cor-

responding to these points, φinc
(1) − φo

(1) = φinc
(2) − φo

(2), φ
inc
(2) =

φinc
(1) − π, and βr(2) = βr(1) − π. Here the lower index in the

brackets means the number of observation point. Good agree-
ment has also been obtained in the far-zone field characteristics
between the case of zero-thickness shell studied in [6] and the
case with ρ2/ρ3 = 0.9975 studied with the aid of our model, as
well as in surface current [see Fig. 2(c)].

In numerical simulations based on (4) and (5), finite number
of the basis functions is used, and the infinite matrix equation
given by (6) and (7) is truncated. The larger the kρ1, φr ,Reε11,
and Reµ11, the larger the number of significant field harmonics
on the rth slot, and the larger the needed number of the basis
functions. Increase of Imε11 and Imµ11 can result in decrease
of the needed value of max j. In wide ranges of variation of
the geometric and material parameters and frequency, including
those considered in this article, it is sufficient to take max j =
k0ρ3 to obtain three stable digits in the field values [Fig. 3(a)].
This rule is kept true, at least if max φr ≤ π/3. The series in
m and n in (1)–(3), (6), (7), (9), and (10) must be truncated at
reasonable index values. For the slots, it is recommended to use
max n ≥ max j + 2. Throughout the paper, sufficiently large
value of max m = 64 was used.

The results obtained show that among the three considered
coatings, the magnetic coating usually provides the best sup-
pression of the field resonances within the whole inner domain,
in a wide frequency range. Fig. 3 demonstrates the effect
exerted by the magnetic coating on the field penetrated into
three cylinders differing in thicknesses, numbers, and widths of
the slots. The considered frequency range involves wavelengths
approximately corresponding to 1.05ρ3 ≤ λ ≤ 4.2ρ3. The
curves correspond to two typical values of ρ/ρ3. The thinner
the cylinder, the thicker the inner coating needed to reduce the
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Fig. 3. Effect of magnetic coating on the field penetrated into a slot-
ted cylinder with finite thickness with (a) ρ2/ρ3 = 0.9975, ρ11/ρ3 =
0.8975, βr = πr/2, φr = π/9, r = 0, 1, 2, 3, (b) ρ2/ρ3 = 0.8, ρ11/ρ3 =
0.7, βr = πr/2, φr = π/9, r = 0, 1, 2, 3, and (c) ρ2/ρ3 = 0.8, ρ11/ρ3 =
0.7, β1 = π, β2 = 5π/3, φ1 = φ2 = π/3. Case a: ρ/ρ3 = ρ11/ρ3 − 0.01;
solid, dashed, and dotted lines correspond to max j = 1, 2, and 3, respectively;
max n = 2max j; upper curves—noncoated cylinder (nc), lower curves—
magnetic coating (mg). Cases b and c: noncoated cylinder (nc) at ρ/ρ3 =
ρ11/ρ3 − 0.01 (solid line) and 0.31 (dashed–dotted line) and cylinder with
the magnetic coating (mg) at ρ/ρ3 = ρ11/ρ3 − 0.01 (dashed line) and 0.31
(dotted line). In all cases, φ = 0.

penetrated field to the same level. Both decreasing the thickness
of the shell and increasing the width of the slots may lead to
the situation when the field amplitude inside a cylinder with a
magnetic coating is even larger than that of the incident wave,
within narrow frequency ranges. Despite this observation, com-
pensation of the field enhancement is rather efficient for most

Fig. 4. Frequency dependence of the penetrated field for the
thick and thin slotted cylinders with the double-layer coatings at
ρ2/ρ3 = 0.8, ρ12/ρ3 = 0.75, ρ11/ρ3 = 0.7 (thick cylinder) and
ρ2/ρ3 = 0.9975, ρ12/ρ3 = 0.9475, ρ11/ρ3 = 0.8975 (thin cylinder),
βr = πr/2, φr = π/9, r = 0, 1, 2, 3; thick cylinder: ρ/ρ3 = 0.69 (solid
line) and 0.31 (dashed–dotted line); thin cylinder: ρ/ρ3 = 0.8875 (dashed
line) and 0.31 (dotted line), φ = 0.

of the considered frequencies. Variations of number, width, and
location of the slots, and coordinates of the observation point
in wide ranges, do not lead to appearance of any new feature
compared with those observed in Fig. 3. In the case of electric
coating, resonance peaks can still be rather sharp, so that field
values may be even larger than without coating. This effect is
especially strong for the observation points close to ρ = ρ11.

For a double-layer coating, the frequency dependence of the
penetrated field shows some features common to those for the
electric coating. However, the peaks in the former case may be
even sharper than in the latter. In Fig. 4, one can see the fre-
quency dependence of the field penetrated into the thick and
thin cylinders with the double-layer coating, which was calcu-
lated for the same geometric parameters of the shell and coating
thickness as in Fig. 3(a) and (b). Several sharp peaks are seen
for both cylinders. Peak shift with thickness confirms their con-
nection to the cavity resonances. The same situation occurs for
the electric coating and for the noncoated cylinder. Note that the
peaks of the resonances observed at k0ρ3 = 5.246 for the thin
cylinder and at k0ρ2 = 5.112 for the thick cylinder are beyond
the plot. For comparison, normalized cut-off wavenumbers of
closed circular cylinder are k0ρ3 = 5.331 for mode TE12 and
k0ρ3 = 5.318 for mode TE41. From analysis of the field pat-
terns, it follows that mode TE12 is the most influentive for the
mentioned peaks.

Fig. 5 compares the effects of the coatings of three types
on the penetration into the thick cylinder. For the electric and
double-layer coatings, the field may vary strongly at a slight
frequency variation. They can be used for a narrow-band weak-
ening/enhancement of the field inside the cylinder. For a wide-
band resonance damping, the magnetic coating should be em-
ployed. This conclusion remains true in wide range of variation
of geometric and material parameters.

Fig. 6 presents a comparison of the performances of thick
cylinders with two wide slots and magnetic and double-layer
coatings. Also shown here are the curves obtained by using the
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Fig. 5. Comparison of the effect of magnetic, electric, and double-layer coat-
ings on the field penetrated into a slotted thick cylinder at ρ2/ρ3 = 0.8, βr =
πr/2, φr = π/9, r = 0, 1, 2, 3; ρ11/ρ3 = 0.7 for the magnetic (dotted line)
and electric (dashed line) coatings and for the double-layer coating (dashed–
dotted line) with ρ12/ρ3 = ρ11/ρ3 + 0.05 = 0.75; solid line corresponds to
noncoated cylinder; observation point is located at ρ/ρ3 = 0.31 and φ = 0.

Fig. 6. Effect of magnetic (dasheded line) and double-layer (dashed-dotted
line) coatings on the field penetrated into a slotted thick cylinder with two
wide slots: β1 = π, β2 = 5π/3, φ1 = φ2 = π/3, radial dimensions and co-
ordinates of the observation point are the same as in Fig. 5, the data for a
noncoated cylinder are shown by the solid line; dotted lines correspond to the
NSTW approximation.

NSTW approximation. Good agreement between rigorous and
approximate results is observed at least at lower frequencies.
The difference can be especially strong in vicinity of sharp ex-
trema. Usually, the best agreement occurs in the case of magnetic
coating, when any sharp maximum does not appear.

The effect of the thickness on the penetrated field is especially
strong in the vicinity of the peaks of the frequency dependence.
The field value at a fixed observation point can be strongly sen-
sitive to a thickness variation, even if the thickness is very small
(say, ρ2/ρ3 > 0.97). However, a maximum of the thickness de-
pendence of the field usually corresponds to a maximum of its
frequency dependence. As an example, Fig. 7 presents the pene-
trated field versus shell thickness for all three coatings. For each
coating, such a dependence is presented for three typical values
of k0ρ3. The value of k0ρ3 = 1.98 in Fig. 7(a) corresponds to the
maximum of the frequency dependence shown in Fig. 3(a) in the

Fig. 7. Effect of cylinder thickness on the penetrated field for several values
of k0ρ3 for: (a) magnetic, (b) electric, and (c) double-layer coatings. Angular
geometric parameters of the shell and the coating thickness are the same as in
Figs. 3(a), 3(b), 4, and 5; coordinates of the observation point are ρ/ρ3 = 0.31
and φ = 0; in case (c) ρ12/ρ3 = ρ11/ρ3 + 0.05.

case of magnetic coating. The values of k0ρ3 = 2.06 and 5.26
in Fig. 7(b), and k0ρ3 = 2.07 and 5.26 in Fig. 7(c) correspond
to the vicinity of the maxima of the frequency dependence in the
case of a thin cylinder with electric and double-layer coatings
from Fig. 5, respectively, whereas geometric parameters of the
shell are the same as in Fig. 3(a). The values of k0ρ3 = 2.58 and
4.87 correspond to the maxima on the frequency dependence in
Fig. 3(b) in the case of the noncoated cylinder. Note the simi-
larity between the dependences shown in Fig. 7(b) and (c). The
main features of the thickness effect presented here for ρ/ρ3 =
0.31 and φ = 0 occur for other observation points as well.
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Fig. 8. Patterns of the penetrated field inside the thin cylinder at k0ρ3 = 5.246
and ρ < ρ2, for: (a) magnetic, (b) electric, and (c) double-layer coatings; geo-
metric parameters of the shell are the same as in Fig. 3(a); coating configuration
is the same as in Figs. 3–7. Note that the incident wave propagates along the
x-axis towards positive x. Slot apertures are centered at x = 0, |y| = 1 and
y = 0, |x| = 1.

The effect of the coating thickness has also been studied for
different values of the cylinder thickness. In the case of magnetic
coating, the field values show a trend to decrease with increas-
ing the coating thickness. However, the coating-thickness de-
pendences of the field are nonmonotonic. Although in the case
of double-layer coating, the effect of coating thickness on the
penetrated field can be rather weak, sharp peaks may still ap-
pear corresponding to the peaks of the frequency dependence
of the field. In the case of electric coating, the thickness depen-
dence of the field has similar features with those for two other
coatings.

It follows from the obtained results that if, for one of the
coatings, the frequency dependence of the penetrated field has a
sharp maximum at a given observation point, substantial differ-
ence between the field values for different coatings may occur
at this and other observation points, provided that the frequency
value is fixed. Owing to the peaks, the field pattern can strongly
vary with rather slight frequency variation. Fig. 8 shows the
effect of coating on the field pattern inside the thin cylinder at
ρ < ρ2, whereas k0ρ3 = 5.246, which corresponds to a maxi-
mum in both cases of the double-layer (Fig. 4) and electric coat-
ings. It is seen that although the field is stronger in the coating,
its values in the inner domain (ρ ≤ ρ11) can be several times of
magnitude larger in comparison to the incident wave. No field
enhancement is observed at ρ ≤ ρ11 in the case of magnetic
coating.

IV. CONCLUSION

In this paper, penetration of the TE-polarized plane wave
through cylindrical cavity-backed apertures has been studied by
taking into account cylinder thickness. The Galerkin method
has been employed to obtain a set of linear algebraic equations,
which is equivalent to the inhomogeneous Helmholtz equa-
tion with the corresponding boundary conditions. The weighted
Gegenbauer polynomials, which are used in Galerkin discretiza-
tion, are particularly appropriate to take into account the edge
condition in explicit form and obtain analytical expressions for
the matrix elements. The obtained numerical results show that
due to the cavity resonances, amplitude of the penetrated field
can be larger than that of the incident field by several times of
magnitude. The effects of inner coatings of three types have
been compared. Efficient attenuation of resonances can be re-
alized in a wide frequency range by using magnetic coating. In
the case of double-layer coating, a strong enhancement of the
incident field can be reached. This case is characterized by coex-
istence of both narrow frequency ranges, within which the field
values are smaller than without coating, and sharp resonance
peaks. The most important advantage of the developed model
is that it can be used for arbitrary thickness of cylinder. The
strongest effect exerted by the cylinder thickness on the field
amplitude is observed in the vicinity of maxima in its frequency
dependence. This effect cannot be neglected even for rather thin
cylinders. The studied penetration effects can be interesting for
engineering applications in electromagnetic compatibility and
interference. The obtained results can be used, in particular, in
the designs of protective shells for various communication lines.
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High numerical efficiency of the developed algorithm can be
further improved by applying a regularization procedure similar
to [18].
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