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GENERAL DESCRIPTION 
 

This work deals with analysis of natural electromagnetic fields (modes), and 
their frequencies and self-excitation thresholds for periodic open resonators made 
of dielectric, metallic and quantum wires located, in general, in a flat-layered 
dielectric medium. As auxiliary problems, we also study two-dimensional 
problems of the time-harmonic plane-wave scattering by infinite gratings of 
circular dielectric and metallic wires. Under the term “quantum wires” we 
understand, as usual in nanotechnology, the wires of the material with gain. Such 
materials can be semiconductors, dye-doped polymers, and crystals doped with 
ions of rare-earth elements. They all can enhance the spontaneous emission of light 
under pumping thanks to creation of inverse population of quantum levels. Our 
analysis is based on the boundary-value problems for the Maxwell equations which 
are cast to the matrix equations of the Fredholm second kind.  

Timeliness of the topic. Modern systems and devices of communication 
and information processing with the aid of electromagnetic waves are quickly 
mastering the short-wave ranges from the terahertz to the ultra-violet. Therefore 
the sources of such waves are actively developed now. Here, the vacuum 
electronics devices are absent or provide very small powers and therefore the most 
promising sources are lasers based on the crystalline, polymer and semiconductor 
microcavities (with the size from units to a few hundred microns) and arrays of 
nanocavities (with the size from a few dozen to a few hundred of nanometers). 
Active regions in these lasers are created thanks to quantum properties of 
semiconductors or by doping the polymer matrix with dyes or the crystalline 
material with ions of rare-earth elements. The desired shaping of the resonators is 
achieved by the use of nanotechnologies, such as molecular-beam epitaxy and dry 
and wet etching. The pumping is arranged either optically or via injection of 
carriers from the electrodes. 

From the above mentioned it becomes clear that the fabrication of 
microlasers based on stand-alone resonators or arrays of nanoresonators requires 
access to extremely expensive technologies. Still further problems are associated 
with measurements of their characteristics, especially in the terahertz range. Only a 
relatively moderate number of laboratories in the world are engaged in the 
development and experimental research into such lasers. In Ukraine, such 
technologies are absent. Because of these circumstances, a preceding modeling of 
the mentioned lasers and an optimization of their geometries already at the design 
stage, i.e. before manufacturing, obtain crucial importance. 

It is necessary to emphasize that the development of efficient micro and 
nanolasers calls for accurate account of their geometries and material parameters as 
their dimensions are comparable to the wavelength of emission. Further, one of the 
fundamental properties of lasers is their ability to emit light on discrete 
wavelengths. This is directly connected to the conception of natural modes as 
discrete forms of electromagnetic field in the resonators. Therefore any laser can 
be viewed as an open resonator equipped with an active region able to generate the 
electromagnetic waves under the pump.  



2 
 

Until recently, the methods of modeling of laser resonators dealt only with 
the search for complex frequencies of natural modes of passive resonators without 
any account of the presence of active region. One the most widespread was the 
Geometrical Optics (GO) or the billiard theory. However this method cannot 
provide a reasonable accuracy of modeling of the resonators sized in dozens of 
wavelengths, is not able to estimate the losses for radiation and hence the Q-factors 
of modes, and completely fails in the description of fields in periodic resonators. 

The other popular instrument, numerical method of finite differences in time 
domain (FDTD), although useful in other areas, is not applicable to the direct study 
of natural modes. Instead, it requires placing a pulse source into a resonator, 
computing time-dependent field at some point and finding the mode Q-factors with 
the aid of numerical Fourier transformation. Each of the mentioned operations 
brings considerable and uncontrolled errors that lower FDTD’s accuracy. 

The mentioned circumstances point out to the necessity of modeling the 
microlasers, including those shaped as arrays of nanoscale elements, by using the 
methods of theory of boundary-value problems for the time-harmonic Maxwell 
equations with exact boundary conditions and radiation condition at infinity. 

Still any analysis of the natural modes of passive open resonators is 
considerably devaluated by the absence, in such model, of any opportunity to 
reproduce one other fundamental property of a laser: the existence of the threshold 
of self-excitation (i.e. the threshold value of pump power). The earlier proposed 
ways to introduce the thresholds were based on quantum-mechanical nonlinear 
models despite a physically obvious observation that “at the threshold” the 
amplitude of electromagnetic field is negligibly small and thus the analysis of self-
excitation thresholds must not require account of nonlinear effects. 

The mentioned drawback was overcome when in the 2000s, in the works of 
A. I. Nosich and E. I. Smotrova, it was first proposed to study lasers as open 
resonators with active regions, filled with a gain material. In that case one can 
formulate a Lasing Eigenvalue Problem (LEP), in which every eigenvalue is a pair 
of real numbers: the emission frequency and the associated threshold value of gain 
in the active-region material. Using this approach, the modes of two-dimensional 
microlasers were analyzed; this included cyclic photonic molecules of active 
circular resonators and the active stand-alone resonators of complicated shapes. 
Still previously the LEP approach was not applied to the analysis of the mode 
frequencies and thresholds of lasers based on periodic structures. Meanwhile, 
quick development of nanotechnology and nanophotonics has led, in the past 10-12 
years, to very active research into the effects of anomalous (i.e. resonant) 
transmission of optical, infrared and terahertz waves through periodically 
perforated layers and their anomalous reflection from rare gratings of 
nanoparticles. It has become clear that such periodic structures are, in fact, specific 
open resonators that can support whole new class of natural modes with very high 
Q-factors – the grating or lattice modes.  

At first, their area of application was found in the design o resonant bio-
chemical sensors of the host medium refractive index. However by today the focus 
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of research has shifted to the research and development of novel lasers based on 
the gratings made of metallic, dielectric and quantum particles placed on a flat-
layered substrate. Their working modes are the mentioned above grating modes 
and such sources are called “plasmonic” or “hybrid distributed feedback lasers.” 
The number of periods in such devices is usually large and counted in hundreds to 
thousands that justifies their electromagnetic modeling as infinite gratings.  

In view of above mentioned considerations, the topic of research is modern 
and timely. 

Relation to R&D programs and projects. The research related to the thesis 
was performed in the Laboratory of Micro and Nano Optics of IRE NASU in the 
framework of the following projects: 
1. Research project of NASU “Development and application of new methods of 

computational radio-physics and theoretical and experimental research into 
transformation of electromagnetic fields of gigahertz and terahertz ranges in 
objects and media of man-made and natural origin” (code “Buksir-3,” state 
registration number 0106U011975, 2007-2010). 

2. Research project of NASU “Development of optical and quasi-optical 
methods for establishing the regularities and peculiarities of the interaction of 
terahertz waves with physical and biological objects (code “Oreol,” state 
registration number 0111U001079, 2012-2016). 

3. Competitive Target Program of NASU “Nanostructured systems, nano-
materials and nanotechnologies”: project “Micro and nanoscale 
electromagnetic modeling of optical fields in resonators with active regions of 
quantum layers, wires and dots” (code “Porig,” state registration number 
2007–2009). 

4. National Target Program “Nanotechnologies and nanomaterials,” project 
“Fundamental mathematical and numerical research into optical 
electromagnetic fields of stand-alone and coupled microcavity lasers with 
nanoscale active layers, wires and dots” (code “Svitlo,” state registration 
number 0110U004737, 2010 -2014). 

5. Competitive research project of the Ministry of Education and Science, 
Ukraine “Innovative numerical modeling of quasi-optical focusing systems” 
(code “Fokus,” state registration number 0109U005351, 2009-2010).   

6. Program of exchange of NASU with the Royal Society, UK, joint projects 
with the University of Nottingham “Modelling of micro and nano-scale 
resonators and lenses for dense photonic circuits” (2006-2007) and 
“Advanced modelling of single and periodic active dielectric resonators for 
microlasers” (2007-2009). 

7. Program of exchange of NASU with the Turkish State Committee for Science 
and Technology, jointly project with the Bilkent University, Ankara, 
“Innovative electromagnetic modeling of multielement quasioptical focusing 
systems for sub-mm and terahertz ranges” (#106E209, 2007-2009). 

8. Program of exchange of NASU with AS of the Czech Republic, joint project 
with the Institute of Photonics and Electronics of ASCR, Prague “Elec-
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tromagnetic and numerical modelling of active and nonlinear microcavities 
for semiconductor lasers and all-optical switches” (2008-2009). 
The work was also connected to the following doctoral student fellowships of 

international societies and foundations: 
- «Electromagnetic analysis of natural modes in distrubuted-Bragg-reflector 

resonators containing active regions», IEEE Antennas and Propagation Society 
Doctoral Research Award (2007); 

- «Lasing modes in a dielectric slab microresonator with a periodic active 
region», International Visegrad Fund jointly with IPE ASCR, Prague, (2009-2010); 

- «Modeling of frequency-selective polarizing reflectors made of sub-
wavelength wire grids for millimeter-wave and THz applications» (2011-2012) and 
«Modeling of biosensors based on the periodic grating of silver nanoscale 
cylinders embedded in a dielectric layer» (2014), European Science Foundation 
jointly with the University of Nottingham, UK. 

Aims and specific problems. The aim of research of the thesis is the 
analysis of natural fields (modes) of three types of open dielectric resonators with 
active regions. The first is flat-layered dielectric resonators. The second is infinite 
gratings made of dielectric, metallic and quantum circular nanowires located in the 
free space. And the third is various combinations of the first two types, i.e. flat-
layered dielectric configurations with embedded gratings of silver and quantum 
wires. For each model, we study both a scattering problem and a lasing eigenvalue 
problem. 

In the first case, we consider reflection, transmission and absorption of plane 
waves of two polarizations, incident normally on the grating resonators. In the 
second case, a dielectric structure (with silver nanowires or without them) is 
considered as an open resonator with active region. Then we look for the natural 
electromagnetic fields (modes) and corresponding to them frequencies of emission 
and thresholds of self-excitation. Such analysis enables us to show the ways for the 
lowering of the thresholds. To achieve these aims, we consider the following 
specific problems: 

• Creation of efficient mathematical model for the computation of wave 
scattering and absorption by an infinite grating of circular wires, 

• Systematic computations of the coefficients of reflection, transmission and 
absorption of plane waves and search for the resonance phenomena cause by the 
existence of natural modes, 

• Creation of mathematical model, which provides adequate description of 
natural electromagnetic fields (modes) of periodic open resonators made of 
nanowires, 

• Development of numerical algorithms for the computation of natural fields, 
frequencies and thresholds of self-excitation for the modes of infinite gratings 
made of quantum nanowires, 

• Systematic computation of natural electromagnetic fields (modes), their 
frequencies and thresholds of self-excitation for periodic open resonators made of 
dielectric, metallic and quantum nanowires. 
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The object of research is the phenomena of the electromagnetic wave 
emission and scattering by periodic open resonators shaped as infinite gratings 
made of circular dielectric, metallic and quantum wires located, in general, in a 
flat-layered medium. 

The subject of research is the natural electromagnetic fields (modes), their 
frequency spectra and self-excitation thresholds, and also the resonance fields in 
the scattering of waves by the above mentioned gratings. 

Methods of research. The work uses the methods of the theory of 
electromagnetics boundary-value problems for periodic structures with exact 
boundary conditions, condition of periodicity, and radiation condition. These 
problems are cast to the infinite matrix equations of the Fredholm second kind. 
Eigenvalues are the frequencies and the thresholds of self-excitation and they are 
found numerically as the roots of the corresponding determinantal equations. 
Material properties of metals in the optical range of wavelengths are taken from the 
experimental data.  

Scientific novelty of obtained results follows from the following 
achievements: 

• The nature of so-called grating or lattice modes of the periodic open 
resonators made of thin dielectric or metal wires was established 

• It was discovered that the grating modes of infinite grating of quantum 
nanowires can have ultra-low thresholds of self-excitation 

• It was demonstrated that the self-excitation thresholds of the grating modes 
can be further lowered by making larger the distance between the quantum 
wires, by making smaller their refractive index, and placing the quantum 
wires between two distributed Bragg reflectors 

• It was demonstrated that, in the scattering and absorption of waves in the 
optical range of wavelengths by a grating of metallic nanowires and a binary 
grating of dielectric and metal nanowires, the resonances on the surface-
plasmon modes and on the grating modes exist together 

• It was discovered that in a binary grating of quantum and metal nanowires 
the self-excitation thresholds of the grating modes can be lower than of the 
surface-plasmon modes 

• Based on the Maxwell equations, the Poynting theorem was established for 
the modes of periodic open resonator of nanowires that links the threshold 
gain with the mode field characteristics 

• The asymptotic expressions for the frequencies and thresholds of self-
excitation of the grating modes of infinite grating made of circular quantum 
wires were derived, valid if the wire radius or refractive-index contrast tend 
to zero 
Practical importance of obtained results. The developed in the thesis 

approach and corresponding numerical algorithms can be used in electromagnetic 
analysis and optimization of working modes of laser microresonators with 
periodically structured active regions or with metallic nanowires gratings. The 
established characteristics of such modes deepen considerably our understanding 
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of behavior of their thresholds of self-excitation in the presence of periodicity. 
They also show the possible ways for the lowering of the thresholds.  

Personal contribution of the candidate. All main results presented in the 
thesis were obtained by the author. His contribution in the research papers [1-6,9-
11] is in the derivation of basic equations, development of numerical algorithms, 
systematic computing of mode frequencies and thresholds, and also interpretation 
of the results related to infinite gratings of nanowires; in review papers [7,8], it is 
in the computations required to illustrate the resonances on the grating and 
plasmon modes in wave scattering by the gratings of silver nanowires. 

Dissemination of results. The thesis results have been presented and 
discussed at the following scientific seminars: IRE NASU (head Prof. P. M. 
Melezhik), Kharkiv University of Air Force (head Prof. O. I. Sukharevsky), 
Erciyes University, Kayseri (head Prof. M. Turkmen), and George Green Institute 
for Electromagnetics Research of the University of Nottingham (head Prof. T. M. 
Benson). They were also presented at the   following international conferences and 
symposia: 

• IEEE Mediterranean Microwave Symposium, Budapest (2007) 
• Optical Waveguide Theory and Numerical Modeling, Copenhagen (2007), 
Eindhoven (2008), Barcelona (2012), London (2015) 
• Theoretical and Computational Nanophotonics, Bad Hoffen (2008) 
• SPIE Photonics Prague, Prague (2008) 
• Transparent Optical Networks, Rome (2007), Athens (2008), Ponta-Delgada 
(2009), Munich (2010), Stockholm (2011), Coventry (2012), Cartagena (2013) 
• Asia-Pacific Microwave Conference, Yokohama (2010) 
• European Microwave Conference, Manchester (2011) 
• European Conference on Microwave Integrated Circuits, Amsterdam (2012) 
• IEEE Conference on Mathematical Methods in Electromagnetic Theory, 
Kharkiv (2012), Dnipro (2014), Lviv (2016) 
• IEEE Conference on Electronics and Nanotechnology, Kyiv (2013, 2016) 
• Microwaves, Radar and Wireless Communications, Gdansk (2014) 
• IEEE Conference on Advanced Optoelectronics and Lasers, Alushta (2008), 
Sevastopol (2010), Sudak (2013), Odesa (2016) 
• IEEE Conference UKRCON, Kyiv (2017) 

Publications. The results obtained in the course of thesis research were 
published in 48 papers that includes 7 journal papers [1-7], one chapter in 
collective book [8] and 40 papers in the proceedings of international conferences, 3 
of which are included into the given below list of main publications. 

Structure and volume of thesis. The thesis includes introduction, 5 
chapters, conclusions, and the list of references. The total volume counts 193 
pages, from which 10 pages are for the list of references (143 titles). 
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BRIEF DESCRIPTION OF THE WORK 
 

In introduction, the timeliness of the considered topic is grounded, the aims 
and tasks of the investigation are formulated, and the general characteristics of 
thesis are presented.  

Chapter 1 presents an overview of the literature around the topic of 
dissertation. General information is given on various approaches and on the earlier 
results of studying the lasers as open resonators with active regions. Research into 
the modes of 1-D flat-layered dielectric resonators and associated numerical 
methods is reviewed that is followed by the review of methods and publications on 
the scattering by plane waves by infinite gratings of circular wires. Explained are 
the drawbacks and limitations imposed by the passive-resonator model. Then the 
Lasing Eigenvalue Problem is formulated for a generic open resonator equipped 
with an active region. For such a resonator, the Optical Theorem is presented to 
explain the link between the threshold gain value and the mode field overlap 
coefficient with active region. 

In Chapter 2, we study the 
frequencies and thresholds of modes 
of a flat-layered dielectric resonator, 
which contains a layer of the gain 
material. 

First of all, it is necessary to 
note that in today’s photonics the 
flat-layered semiconductor micro-
cavities with embedded into them 
active layers (“quantum wells” or 
layers of random quantum dots) 
occupy a very important place. In 
particular, such structures are found 
in the widely known vertical cavity 
surface emitting lasers (VCSELs). 

In the simplified 1-D model, a 
VCSEL is made of a flat resonator 
containing an active layer and two 
mirrors made of distributed Bragg reflectors (DBR), see Fig. 1. For understanding 
the emission modes of VCSEL, one has to study at first the modes of the flat 
resonator that makes its core. Such a simple resonator is called “Fabry-Perot 
etalon.” 

 

Fig. 1. Cross-sectional view of a flat-
layered dielectric open resonator with an 
active layer  

Top DBR, NT pairs 

Bottom DBR, NB pairs 

Cavity 

QW 

Air 

Air 

If the DBR reflectors are absent and the active layer is placed exactly in the 
resonator center, then  and the geometry is symmetric. Then the LEP can be 
reduced to characteristic equation, , where  are the 
reflection coefficients of the lower and upper dielectric-air interfaces. The 
asymptotic expressions for the roots of this equation depend on the relative width 
of the active region, , and the index of refraction, 

0b =
2 ( )( / )

1 2
c a ci i w we Rκ α γ− − = 1 2R R=

/aw w 1cα >> , as follows: 
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]

Fig. 2. Effect of DBRs on the self-excitation thresholds of a GaAs resonator with 
an active layer of the width wa=0.1wc in its center: wH =79.63 nm, wL =69.48 nm 
(a). Dependence of the normalized frequency (b) and the threshold gain (c) of the 
mode E11 on the number of pairs of layers in DBRs. 
 

 
( 1) /n cnκ π α= + ,   1[ ( / )] ln[( 1) /( 1)n n a c c cw wγ κ α α−= + − ,  (1) 

 
where is the normalized frequency, κ ckw= γ  is the threshold value of gain needed 
for the mode self-excitation. For the numerical analysis of similar LEP for the full 
model of VCSEL, we use the transfer-matrix method and modified characteristic 
equation where the coefficients  and  are replaced with DBR’s reflection 
coefficients. 

1R 2R

 In Fig. 2, we show the results of computation of LEP eigenvalues for the full 
model of Fig. 1. Here, semiconductor layer of the thickness  is made of GaAs 
with refractive index 

cw
3.53Hα =  and contains, in its center, the active layer of the 

thickness  and refractive index 1/10aw = cw 3.53-iα γ= . This resonator is 
sandwiched between two identical DBRs made of N pairs of dielectric layers of 
GaAs and Ga0.8Al0.2, where the latter material has refractive index 3.08Lα = , 
with thicknesses  and 79.36 nmHw = 69.48 nmLw = , respectively. 

Note that in Fig. 2 (a) we show a part of the plane (  where the stars 
mark the LEP eigenvalues for the resonator without DBRs and the thick dots mark 
the same for the resonator with two DBRs made of 20 pairs of layers each. The 
presence of reflectors is almost not change the normalized frequency of emission 
however the threshold gain of the mode experiences a drastic change if the 
frequency lays in the stop band of DBR. Namely, the threshold gain of the mode 
E11 drops from 0.7 to 

, )κ γ

42 10−⋅ if the number of the pairs of layers in each DBR 
grows from 1 to 20. The computed LEP eigenvalues are found to satisfy the 
Optical Theorem with machine precision. 

In Chapter 3, we analyze the properties of the infinite grating consisting of 
dielectric or quantum nanowires in the free space. At first, we study the problem of 
the scattering of plane waves, which are incident normally on such grating (see 
Fig. 3) assuming that the wire material is a lossless dielectric with refractive index 
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α . Then we study the LEP where ν α iγ= − . Here, two polarizations, E and H, 
should be studied separately with the aid of a scalar function , which is 
either 

( , )U x y
zE  or 0 zZ H  component of electromagnetic field, respectively. This function 

must satisfy the Helmholtz equation with different coefficients: 2 2αk  or 2 2νk  
inside the wires and  outside of them. The field periodicity condition,  

 enables us to reduce each of considered problems to 
elementary strip of the width p along 
the y-axis. 

2k
( , ) ( ,U x p y U x y+ = )

 With the aid of separation of 
variables in local polar coordinates 
and the addition theorem for 
cylindrical functions, the plane wave 
scattering problem is reduced to a set 
of linear algebraic equations, which 
can be compactly written as the 
following operator equation:  

 
Fig. 3. Cross-sectional view of an infinite 
grating made of identical circular 
dielectric or quantum nanowires.  

 
[ ( ; , )]I A X Yσ ξ α+ = { }, δmnI = , ,  (2) .{ }mn m nA A ∞

=−∞=
 

where /pσ λ=  is the normalized frequency, /ξ p a=  is the normalized distance 
between wire centers, { }m mY y +∞

=−∞=  is a known excitation vector, { }m mX x +∞
=−∞=  is 

the vector of unknowns, and mnδ  is the Kroeneker delta. 
Here, the matrix mnA  belongs to the Fredholm second kind type. Therefore 

the numerically obtained solution to (2), { } N
m m Nx +

=− , converges to exact solution by 
the norm in  with larger truncation numbers N. Floquet harmonics, which enable 
one to build the field in the far zone of the grating, are obtained from computed 

2l

{ }nx  using the Poisson transformation. 
It is also necessary to note that the integer values of the normalized 

frequency, 1,2,3...σ = , correspond to the branching points of the field as a 
function of the wavelength λ ; these points are called Rayleigh anomalies. 

Color maps (reliefs) of the absolute value of the reflection coefficient of the 
plane wave by a grating of dielectric nanowires with 1.4142α =  as a function of 
the normalized frequency σ  and the normalized distance  ξ   (Fig. 4 (a)) show a 
number of maxima of reflection (bright “ridges”). They are caused by the 
resonances on the natural modes of various types that exist in the given periodic 
resonator. These resonances shift in frequency if the parameters ξ  or α  vary.  

As known, the eigenvalues coincide with the poles of the resolvent of the 
scattering problem or, equivalently, with the roots of determinantal equation, 

 
.det[ ( , ; , )] 0, { }κ γ ξ α mn m nI A A A +∞
=−∞+ = = .        (3) 
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α

 

(b) 

 
(а) 

(c) 

Fig. 4. Color maps of the absolute value of the reflection coefficient of the H-
polarized plane wave from the grating of dielectric nanowires as a function of the 
normalized frequency σ  and the normalized distance between the wires ξ  at 

1,4142α =  (а). Dependences of the frequencies (b) and thresholds (c) of the 
grating modes on the normalized distance. 

These roots can be classified to two classes. The first is the eigenvalues of 
the inner domain of each nanowire that are close to the zeros of one of the 
characteristic functions of a single dielectric wire,  

 
, 1 (1) (1)( ) ( ) ( ) ( )E H

m m m m mF H ka J ka H ka J kaα α± ′′= − ,          (4) 
 
where , and the functions involved are the Bessel and Hankel functions 
and their derivatives, however slightly shifted because of the coupling with all 
other wires. The corresponding to them maxima of reflection have the shape of 
broad ridges, which cross the vertical lines corresponding to the Rayleigh 
anomalies in Fig. 4 (a), with growing  

0,1,2,...m =

ξ , because for these roots  ka const≈  or 

,
H
m n constσ ξ≈ ⋅ . We call them the modes of the nanowire of the type . ,m nH

The second class is the eigenvalues, for which the maxima on the maps in 
Fig. 4 (a) do not cross the mentioned vertical lines but tend to them with growing 
distance between the wires, ξ . This means that the corresponding to them poles of 
the resolvent tend to the branching points as , ( 2GH q

m n m const qσ ξ − )≈ − ⋅ ≥  if  
ξ →∞ . These natural modes are called the grating or lattice modes, . ,m nGH

Further we consider the LEP where there is no incident wave and the 
refractive index is assumed complex, ν α iγ= −  (with a known α ). Then the mode 
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(a) (b) (c) 

Fig. 5. The field in the grating-mode resonance 1GH +  near the grating of dielectric 
nanowires ( 2,46α = ) for the normally incident H-polarized plane wave: (a) 

5, 0.776658ξ σ= = , on five periods, and (b) 10, 0.9967ξ σ= = , on seven periods. 
The cuts of the resonance field along the y-axis for three values of ξ  (c)  

 
threshold of self-excitation γ  is sought for, together with the mode natural 
frequency σ , as an eigenvalue. 

In Fig. 4 (b) and (c), we show the dependences of the frequencies and 
thresholds of two lowest grating modes of different symmetry across the line 

:  and  on the normalized distance between the quantum wires, 0y = 1GH +
1GH − ξ . 

As one can see, if ξ  gets larger, then the normalized frequencies of these modes 
tend to the Rayleigh anomaly at 1σ = . Still more important is the fact that the 
thresholds of self-excitation of the grating modes go to zero. This behavior is 
drastically different from the thresholds of the nanowire modes that remain finite 
and rather large if the wires have smaller than the wavelength diameter.  

In Fig. 5, we present the field near the grating in the resonance on one of the 
grating modes, for the plane wave incident normally on the grating of dielectric 
nanowires with refractive index 2,46α =  and several values of ξ . If 5ξ = , (Fig. 5 
(а)), then the field maxima are on the wires and their values are a few times larger 
than the incident-wave amplitude. Fig. 5 (b) demonstrates the resonance on the 
same mode at 10ξ = , and the field maxima are exactly on the nanowires and in the 
middle between them that is the signature of the grating mode. The size of the 
domain (counted in periods) where the resonance field has large amplitude is 
shown in Fig. 5 (c). Here, we plot the cuts of the field along 0x =  for three values 
of 10,15, 20ξ =  on the frequencies of the maxima of reflection. 

 In the first case the field maxima are approximately 60 times larger then the 
incident field, and the area of high intensity spreads to the distance of 8 periods. If 

15 and 20ξ = , then the field maxima reach 300 and 1000, and the area of high 
field intensity spreads to 60 and 200 periods, respectively.  

Using the Gershgorin theorem, we derived asymptotic expressions for the 
frequencies σ  and threshold gains γ  of the grating modes. For instance, for such 
mode of the first order, , if 1GH + ξ →∞  or 1α → , then 
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( )28 21 1 2 1 8σ π α ξ −= − − , ( )24 21 8 ( 1) 1 4γ π π α α ξ −= − − .  (5) 

 
These asymptotic expressions confirm the mentioned above properties of the 

grating modes and show in detail how the corresponding to them eigenvalues tend 
to Rayleigh anomalies.  

In Chapter 4, we study the effects that appear on the wire gratings in the 
presence of nanowires made of noble metals, in the visible range. At first, we 
analyze the scattering of light on an infinite grating of silver nanowires in the free 
space; then we continue this analysis to a binary grating made of both dielectric 
and silver nanowires. After that we study the LEP eigenvalues connected to the 
surface-plasmon modes and the grating modes (caused by the periodicity) of a 
binary grating made of silver and quantum nanowires. 

In Fig. 6, we show the plots of the absolute value of the reflectance and 
absorbance of the H-polarized plane wave normally incident on the grating of 
silver nanowires of the radius 80,90,...140,150 nma =  and period 450nmp = . 
One can see a sharp resonance near to 450λ = nm that equals to period: this is the 
resonance on the grating mode. The other resonance is seen at the wavelength 

348λ ≈ nm that corresponds to the root of equation ( ) 1ε λ = − , which is the 
asymptotic form of equation (4) if , . This is the localized surface-
plasmon resonance. It is interesting by the fact that its frequency is almost 
independent of the radius of nanowires if 

1ka 1m ≥

λa . 
It should be noted that the analysis of plasmonic effects in the context of a 

lasing for such a configuration has not been performed so far.  

 
(a) 

 
(b) 

 
Fig. 6. Absolute value of the reflectance (a) and the absorbance (b) of the plane 
wave incident normally on the grating of silver nanowires with period 450 nm and 
the radius varying from 80 nm to 150 nm.  
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In this thesis, we study a 
binary grating made of quantum and 
silver nanowires (Fig. 7). The color 
maps of reflectance and absorbance 
are shown in Fig. 8 (a) and (b) in  
dependence on the wavelength and 
the angle of positioning of the wires 
φ , for the wires of identical radius, 

, placed at the 
distance of  100 nm from the local 
origin at 

1 2 50nma a= =

1φ φ=  and 2φ π φ= + . 
 As visible, the wavelength 
band of high reflection between the surface-plasmon and the grating-mode 
resonances remains approximately the same for all values of the angle φ . The 
resonances on the grating modes show up, on the maps of reflectance and 
absorbance, as two “ridges” slightly to the right from the wavelength λ p= . Note 

 

Fig. 7. Cross-sectional view of an infinite 
binary grating of circular nanowires made 
of silver and dielectric, i.e. having different 
refractive indices  

(a) 
 (c) 

 (b) 
 (d) 

Fig 8. Color maps of the absolute value of reflectance and (a) and absorbance (b) as 
a function of the angle of positioning of wires and the wavelength for the H-
polarized plane wave normally incident on the binary grating  of dielectric and 
silver nanowires with period 400nmp =  and radius 1 2 50nma a= =  and refractive 
index 2.48α = ; wire center coordinates are 1 2 100nmr r= =  and 1φ φ= , 1φ φ π= + . 
The wavelengths (c) and threshold gains (d) of the lasing modes as a function of 
the angle of positioning in the binary grating. 
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that these “ridges” vanish near to 0, / 2 and φ π π= , i.e. if the wires form 
configurations with two lines of symmetry. This can be explained by the fact that 
the natural fields of these modes are anti-symmetric with respect to the y-axis and 
hence cannot be excited by the normally incident plane wave. 

To make a comparison between the surface-plasmon mode and the grating 
modes, we compute the variation of the LEP eigenvalues with the rotation of the 
pair of wires around the center of the distance between them in the elementary cell. 
Fig. 8 (c) and (d) show the dependences of eigenvalues on the angle of positioning 
for three different modes of the same grating as in the plane-wave scattering 
problem demonstrated in Fig. 8 (a) and (b). 

As before, the resonance wavelength enables us to identify easily the modes: 
the surface-plasmon mode remains close to 340nmλ ≈  while two other modes are 
the grating modes because their wavelengths are slightly larger than 

400nmpλ = = . Note that the first and the second grating modes appear on the 
color maps in Fig. 8 (a) and (b) as narrow bright ridges while the surface-plasmon 
mode is visible as a wide strip. AS could be expected, the dependences of the 
lasing wavelength on φ  have almost the same form as the ridges of high-Q 
resonances in Fig. 8 (a) and (b). The threshold gain of the grating mode 1 has a 
minimum for the vertical arrangement of wires ( / 2φ π= ). However a deeper 
minimum is observed if the wires are placed at the angle of approximately 45о in 
the elementary cell.  

This can be explained taking into account the areas of high intensity of the 
electric field of the grating mode made of silver wires. Indeed, the natural magnetic 
field of the grating mode that is symmetric along the x-axis has large maximum in 
the middle between the wires. As known, the natural electric field has zeros at the 
same places where the magnetic field has maxima. Therefore placing a quantum 
wire in the middle between the silver wires leads to inefficient overlap between the 
active region and the electric field of mode 1 and, hence, to high threshold. If 

/ 2φ π= , then the mode 2 has the opposite symmetry along the y-axis with respect 
to the mode 1, therefore its threshold behaves differently – see Fig. 8 (b). Note also 
that mode 1 and 2 display hybridization (also called parametric interaction) at the 
variation of the angle φ : their frequencies get near at the values of φ  where the 
thresholds cross each other.  

The most valuable result of this study of the lasing modes of a binary 
grating, as we believe, is the finding that the threshold gain of the grating mode can 
be from 3 to 60 times lower than the threshold gain of the surface-plasmon mode, 
at least if all silver and quantum wires have the same radii of 50 nm. 

In Chapter 5, we study the properties of the infinite gratings made of 
dielectric, metallic and quantum nanowires located in a flat-layered host medium. 
This choice is related to the consideration that frequently in realistic circumstances 
the gratings of nanowires are manufactured in such a way that the wires are 
embedded into a “matrix”, i.e. a flat dielectric layer of different refractive index.  

One of such periodic structures is shown in Fig. 9: this is a dielectric layer 
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with refractive index α S  and 
thickness . Inside this layer there is 
an infinite grating made of dielectric 
wires placed at the distances  and 

 from the lower and upper 
boundaries of the layer, respectively. 
The period of the grating is 

d

1d
2 2d d= −

 
Fig. 9. Cross-sectional view of an infinite 
grating of circular nanowires placed into a 
flat dielectric layer 
 

a

p , the 
wire radius is a , and its refractive 
index is α  in the plane-wave 
scattering problem and ν α i= − γ  in 
the LEP.  

The treatment of electromagnetics problems is based on the use of the 
scattering matrix approach. For building the scattering matrix of a layer with a wire 
grating, one has to multiply the scattering matrices, in terms of the Floquet 
harmonics, of the grating itself and of the flat boundaries, and also the matrices of 
the plane wave propagation through uniform dielectric layers of thicknesses d1,2. 

In Fig. 10 (a), we present the color map of the absolute value of the 
reflectance of the normally incident H-polarized plane wave as a function of 
normalized thickness and the normalized by the period frequency σ. The grating 
period, denoted as p , is fixed to be 4 , the refractive index of the layer is a 1,6Sα =  
and the refractive index of the wires is 2α = . The ratio of the layer thickness to 
the period varies from 0.51 to 2. Here, the smallest value of  corresponds to 
the case of the thickness being only slightly larger than the wire diameter, and the 
largest value corresponds to 

/d p

2d p= . One can see two types of resonances on this 
color map, each of them showing up as a curved ridge. 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Color map of the absolute value of the reflectance (a) as a function of the 
relative thickness of the layer with refractive index 1,6Sα =  and the normalized 
wavelength, for the plane H-wave normally incident on the grating with period 

4p a=  made of the dielectric wires with 2α = . Frequencies of emission (b) and 
threshold gains (c) for the same configuration as a function of the normalized layer 
thickness. 
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The first type is the relatively broad and low ridges, which correspond to the 
low-Q resonances on the dielectric layer modes. The second type is the sharper and 
higher ridges, which correspond to the high-Q grating modes of the wire grating.   

It is worth noting that the growth of the layer thickness leads to appearance 
of the grating modes of higher orders. The dependences of the grating-mode 
frequencies and associated thresholds on the normalized layer thickness are shown 
in Figs. 10 (b) and (c). They demonstrate good agreement between the resonance 
frequencies in the plane-wave scattering problem and the frequency of self-
excitation in the laser problem. As for the thresholds, their behavior is determined 
by the overlap coefficients between the quantum wires and the electric field of the 
working mode.  

Consider now the dependence of the LEP eigenvalues for the grating modes 
on the refractive index of the layer. Here, we assume that the refractive index of 
the wires is 2α = . The wire grating is placed in the middle of the layer, so that 

, the layer thickness equals to the period, , and the refractive 
index of the layer varies from 1 to 2. This variation corresponds to the 
transformation of the structure from a dielectric wire grating in the free space to a 
uniform dielectric layer with refractive index 

1 2 2d d d= = − a d p=

2α αS = =  in the free space. In the 
intermediary situations, we have a flat dielectric layer with embedded wire grating 
having a refractive index larger than the layer. In Fig. 11 (a), we present the color 
map of the absolute value of the reflectance of such a structure in the case of the H-
polarization. As mentioned, the right boundary of the map corresponds to the 
uniform dielectric layer; the cut of the map along that line shows sinusoidal 
dependence, which is the same for either polarization because of the normal 
incidence. The broad ridges that start here are the resonances on the layer modes. 
The resonances on the grating modes stretch from the left boundary of the same 
map as sharp narrow ridges. The smaller the contrast between the refractive indices 
of the layer and the wires, the narrower the latter ridges. 

The corresponding dependences of the LEP eigenvalues of the grating 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Color map of the absolute value of reflectance as a function of the 
refractive index of layer Sα  and the wavelength of the plane wave normally 
incident on the grating of the period 4p a=  made of dielectric wires with 2α =  
(a). Frequencies (b) and threshold gains (c) of the same modes for the grating of 
quantum wires in a flat layer, H polarization 
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modes of the grating of quantum wires embedded into the passive layer are shown 
in Fig. 11 (b) and (c). The plots of the frequencies of emission fully agree with the 
resonance ridges on the map of the reflectance. The plots of the thresholds 
demonstrate important result: if the contrast between the refractive indices of the 
layer and the wires is getting lower, the thresholds rapidly drop. This fact is in 
agreement with results presented in Chapter 3 where we consider a grating of 
quantum nanowires with small refractive index in the free space. 

 
Conclusions 

 
In the thesis, we have studied a timely problem of electromagnetics that 

consists of development of linear electromagnetic model able to characterize the 
frequencies and the thresholds of self-excitation of the natural electromagnetic 
fields (modes) of periodic open resonators made of circular dielectric and metal 
nanowires, with active regions made of quantum wires. In the framework of such 
model, we have studied the modified for lasers eigenvalue problem for several 
important configurations of two-dimensional periodic resonators. Among them, 
there is an infinite grating of quantum nanowires in the free space or in a flat-
layered medium and a binary grating made of quantum and silver nanowires. As 
auxiliary problems, we have considered the scattering and absorption of plane 
waves of two polarizations by the mentioned above gratings. 

The main scientific and practical results are as follows:  
 The electromagnetic characteristics have been obtained of the so-called 

grating modes, the frequencies of which are close to the Rayleigh anomalies, of 
periodic open resonators made of nanowires.  

 It has been established that in the infinite grating of thin quantum nanowires 
the grating modes can have arbitrarily low thresholds of self-excitation; these 
thresholds can be lowered by making larger the distance between the wires, 
making lower their refractive index, and placing them between the distributed 
Bragg reflectors.  

 It has been found that in the visible range the spectra of the scattering and 
absorption of waves by a grating of metal nanowires and by a binary grating of 
dielectric and metal nanowires demonstrate co-existing resonances on the surface-
plasmon modes and on the grating modes. 

 It has been demonstrated that for the binary grating of quantum and metal 
nanowires the thresholds of self-excitation of the grating modes can be 
considerably lower than those of the plasmon modes. 

 The Poynting theorem has been derived for the natural modes of a periodic 
open resonator of quantum wires that links the mode threshold gain to the mode 
field characteristics.  

 The asymptotic expressions have been derived for the complex natural 
frequencies of the grating modes of the grating made of circular dielectric 
nanowires and for the thresholds of such modes of the grating of circular quantum 
wires having small radius or small optical contrast with the host medium. 
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