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Abstract.

The problem of mode spectrum in regular partially screened circular dielectric rod is
analysed by means of the theory of analytical operator-functions technique.The spectrum
is proved to_ exist, to be descrete and to comsist of both principal and higher order
modes, including slot and strip waves., Constants of propagation, impedance and losses of
modes as functions of freguency and geometrical parameters are investigated numerically,

1. Introduction,

Electromagnetic waves guided by transmis-
sion line, cross-section of which is shown
in fig.l, are investigated. This line may
be viewed as a standard open waveguide of
nonplanar type. When the slot is more nar-
row than the strip (6<8) it is called cir-
cular cylindrical slot line (CSL), while
in the opposite case (8>8) - circular cy-
lindrical microstrip line (CML).

Nonplanar lines have began to be interes-
ted in more recently than planar ones,
Static or quasistatic approximation for T
and quasi-T modes in lines analogous to
CML were considered in [1-3], full-wave
solution attempt being restricted to the
case of a narrow strip only.

Here the full spectral problem is conside-
red in correct electrodynamic formulation
(see [4]1). The main idea is to reduce it
to determination of characteristic values
of some Fredholm matrix operator-function,
Numerical solution of dispersive equation
obtained provides computation of propaga-
tion constants, impedance and losses with
any given accuracy. The losses are calcu-
lated by means of the perturbations theo-
ry technique modified in accordance withl5l

2. Spectral problem,

Assume the electromagnetic field in the
waveguide to be a normal %uided wave with
Elez)=<u<r>’

, Where h is a complex con-
stant of propagation. To solve spectral
problem means to determine those values of
parameter h, which generate nontrivial so-

lutions W(F)=(u,v)ECZ@®\(r=2)MCL@®3) of
equation

v (‘;) )eihz-iat

(a+ B)W(E) =0 for Te®N\(z=a) (1)

satisfying boundary conditions on the slot
3L=(r=a,lpl<0) and the strip ?M=(r=a\dL

(357 Z|,1=0, [Bg¥17 |y =0, BgW|y=0, (2)
condition of local energy limitation

é(lkW]2+lgradﬁ\2)rdrd¢y<w for DCRZ, (3)

and Reichardt "radiation" condition [6]
for 2ll r>4&

W(r)=§n:<an-bn)1*i(zll)(81‘)elmf (&)
Here §2=k2£-h2, g2=k2—h2#0, k is a free

Space wavenumber and differential opera-
tors BE’ BH follow from Maxwell equations,

Complex eigenvalues of h form the spectrum
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O of generalized normal eigenmodes of
open waveguide. In view of (4) h is assu-
med to lay on Riemenn surface &£ of the
function In(k+h)(k-h), which has two
branch points h=+k and consists of infini-
te number of sheets. A note should be made
that problem (1)-(4) depends on the angu-
ler width of the slot 26 or the strip 2§=
2(- 8)in e singular way. Therefore one
may suppose the spectrum 6(8) to have dif-
ferent structure at €=0,0<8<X and 8= 7.

3. Equivaelent operator-function.

Let us expand the components of W(T) in
Fourier series setisfying (1) and (4)

u(@)=2; zzF{Un(r/a)ein"’ . v(@)= (5)
n

;Z (ng—nqﬁpnzg)ann(fn—anqvn(r/a)ein?

n

where U (%) and V_(t) are functions propo-
Ttional te J (yt) if t<1 or H(; (=t)ir £,
pn=(an)"1if r>a or (xrn)'1if <ea, X=ga, -
= -7 -1 ’ -1 b
y—ga.1rn I (3907, Fp=H_(xH )™, =9, (¥)
H =H' (x). After some manipulations on

(5) and (2) one obtains dual series equa-
tions ]

g 1
Zzne ™ o,

n

Pes ) (6)

s ing ..8_8 s_t,_ing i
2; z_ lnje™ 7= (cnzn+nqsdnzn)e )Qe?S(t)

where s,t=E,H, s#t, ?S(g)=oM, 25(gy= L, :

__ inke®(e-1) 1hka®(€-1)
= e 9 H’ 9
2x(e+1) xy

CE=ln[— éﬁ)in__ cH= [nl.(.gz_“'x_z)_fn_Pn:
pal b

1
2(E+1)(fn-Fn) n—Fnb 22
B (x2+y2)Fn ° (x2+y2)rn'
dn=1+~2——,dn=1——2———,
¥ (fn—Fn) x (fn—Fn)

x 2 4 2 =2 =2
D =(££ -F )(f -F_)-(nkh)“a®(e-1)°x <y

with the condition following from (3) -

lei}zlnﬂmm
n

Left-hand side of (6) forms Riemann-Hil=
bert boundary value problem, solution<of
which leads to linear algebraic_equatiocn
generating the operator equation

, s=B,H .Gl

2 .\:i;‘,’f' m«’ S L s H A1

JLATTATT AL,

e



[T -am)]z =0, (8)

where
LG X L IOR.CP R P
A1‘=c§£;n<u>, a22=(-n™3Hy (L),
Alaenggalr (w), A21(-1)™Pag afln (-u),

T,o(aw)=-1n((17u)/2), T =(2, ,-P )/(21),
Lo g BB 4/ (3m0n) Po=P, (#u)

are Legendre polynomisals, u=cos 8.

Basing on the estimates of Az]ﬁzax as |m| ,|njse

one may show A(h) to be = compact operator
in Hilbert space of pairs of number sequ-

erices 1§=lzx12. Consequently (8) is e Fred-

holm equation, solution of which may be
shown %o generate functions (5) of the ne-
eded class. Therefore problem of characte-
ristic values of (8) is spectrally equive-
lent to (1)-(4) on X\ A, where the set A
consists of the points h=+k, h=+h_=

ik[(i+1)/2]1/2_ and poles of ci’H, dg’H.

4.Fundementel properties of spectrum.

Detailed investigation shows A(h):lg*lg

to be & finite meromorphic operator-func-
tion on ¥ \(tk,+hg,® ). Going from energy

theorems one may prove the existence of
nonempty free of spectrum domain p<f where
I- A(hg is invertible. When Im k>0 and
(or) Im£>0 P includes the whole real axe
of "physical" sheet of X (mo proper ei-
genmodes exist). When Im k=0 and Imeg =0

P includes the parts of this axe external
to the intervals k<lhi<kvE. Basing on this
and theorems from [ 7], one comes to

Theorem 1. GO is at most a descrete set of
points o finite multiplicity with the on-
1y accumuletion point et infinity on X .

Proper eigenmodes exist if Im k=0 and Ime=
0 only and their number is at most finite.

Spectrum symmetries on X are proved by
substitution to (1)-(4). 0 consistsofpairs

(#h) or quartets of points(ih,g),(ih*,—g*)
provided that Im k=0 and Imég =0.

In order to prove the existence of & one
mey use the theorems from [ 7] and the fact
that it is true for some more plaein struc-
tures: closed waveguide and its external
domain (€=0) and circular dielectric rod
(8=7). Here the main difficulty is caused
by noncontinuousness of A(h,8) on 9 as
8+0 and §- o .

Manipulating on (8) one obtains two inde-
pendent equations jointly equivalent to (8)

it - A(i)(h,e)]z(i) s
where

(#)_, B+ H+ St_(, S, S
Z -(Z "'1Z —)1 Z _?-'(-‘n'_f'_z_n)n:O’

(9)
a=EH,

13(£)_, 413 < L,0d =
A -—(Amn o+ (‘1) A—mn)m,n=0’ i,j=1,2
It means that © gplits into two sets @
generating two orthogonal families of wa-

ves: Ezodd/Hzeven and Ezeven/Hvodd in the
- Sence of symmetries to the plane Y =0,7 .

537

Operator-function A(+)(h,s) depends conti-

nuously on 8€[0,T) while A(-)(h,e) on
8 € (0,7] ,that gives way to prove

Theorem 2. 6 is not empty for ell 0< 6.
foints of 6 depend continuously on & and

enalytically on ke and € if nonspectral pa-
remeter is not a value of their coalescen-
ce.

5. Singulaer and principal modes.

It hes been found out that for any slot

widtn (6£0) s(-) includes a point genera-
ting so-called slot mode given by

h(Hoo)=k [(e+1)/2+ (ka)_‘211'1-251'.1:12]1 /2 (10)

458+ 0 slot mode is of quasi-H type view-
ing from the point of field structure. It
hes a smell but finite cutoff frequency,
that is why it is not = principal mode.

In a similar way for eny strip width(§#0)

5<+)includes a point generating so-called
8trip mode given by

2
h(Eoo)=k[1+2(£—1)(4+1‘§—<-§—Z£—i12)-1]1/2‘ (1)

1nsin(§/2)

where 22 =ka(e-1)1/2,

At contrast to slot mode strip one is not
only a quasi-E mode es §+ 0 but also =
principal (quesi-T) mode with no cutof?
frequency. Besides, CML spectrum includes

two more principal modes, namely, H"FEi11
modes of dielectric rod perturbed by

the sitrip. As for CSL spectrum, it inclu-
des not only slot mode and other higher
order ones but also three principal modes:

quasi-To and quasi-'l‘i1. Slot mode and qua-

si-TZ. modes are singular ones of CSL whi-
le st%ip mode is & singular one of CML be-
cause they disappear from & ™Mor 6 “when

8=0 or § =0. All the other modes trensform
continuously to E and H-modes of closed

waveguide and its external domein as 6-+0
and to modes of open circular rod as &§-0.

6. Numerical results.

As A(i)(h) are compact in lg the points
o0, i)ma.y be appoximeted by characteris-
tic velues of truncated equations (9) or
the zeros of their determinents. Anelyti-
city of A(h) guarantees possibility of
highly effective iterative algorithm tobe
applied basing on Newton principle.

Fig.1 shows trensformation of CSL modes
to CML ones with widening the slot.Change
of azimuthel index during the transforma-
tion points out to coupling effect with
the other mode at some O0<8<r.

Fig.2 demonstrates evolution of mode
fields with variation of 8.

Slot end strip mode impedances are given
by

2Eo0) 2 /23, 2 ool ap/12, (12)

where

Eg(a,g)dgl, I=(4xa/c)4§1[H?<a,?ﬂjdyl,

V=al$
2L

* *
P=(c/8x) gi (ErH?—E?Hr)rdrdlf
R
and the results of computations are pre-
sedted 40 Tiz.3,

Losgses in dielectric and
by

metal are given
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[Zl %rardy (13)

3

0
=&
dﬁ =(ckda/32ntP S QH+]2+\H‘|2)d¢
" -$+a
where A=ch/a, cL=1/2ﬂe is Lewine constant
5, d=()c/r)1/2(2x?—1 is the skin-layer
depth, T is conductivity, 2w is the thick-

ness of the strip with Tectangular edge.
Fig.4 and 5 show that &, 1s several times

greater than GLa provided the wavelength fﬂo

is not too short. The curves in fig.3 and e == ; ' : -
5 fall down to zero at cutoff frequency
(when slot mode becomes s leaky one) due
to unlimited growth of P.

a
da=(ckImE/8xP)S

o .

) (18)
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Fig.3 Slot end strip mode impedance varia-
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