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An Analog of Surface Tamn States 
in Periodic Structures on the Base 

of Microstrip Waveguides
D.P. Belozorov 

A.A. Girich 
S.I. Tarapov 

Abstract

The Tamm state concept was formulated for periodic 
systems consisting of microstrip elements by analogy with 
the well-known Tamm state in photonic crystals. The unit 
cell, which determines the period of our microstrip system, 
consists of four elements: two segments with lengths 1L  and 

2L , and two connections (1,2) and (2,1). The total period of 
the structure is equal to 1 2L L L= + . The transfer matrix for 
the unit cell is written. The Bloch equation for the infinite 
system is formulated from the conditions of periodicity. The 
solutions of the Bloch equation determine the Bloch wave 
vector and the spectral structure of our infinite system. The 
numerical calculations of an important model system were 
performed. The model system consisted of two periodic 
subsystems (eight elements in either of the two), with 
different parameters of periodicity. The analog of the Tamm 
state was observed as a crowding of electromagnetic waves 
propagating through the system at the transition between 
two subsystems. The concentration of electromagnetic-wave 
energy takes place at the border point of one-dimensional 
subsystems. A corresponding transparency peak (a Tamm 
peak) appears in the coinciding forbidden frequency bands 
of two subsystems.

1. Special Properties of a 
Quadripole (Four-Pole) Medium

Currently, the study of bounded periodic structures 
(photonic crystals) and the condition for surface states 
to appear at the interface separating these structures had 
attracted the unceasing interest of researchers. The topic 
we are going to discuss now is connected with the well-
known surface Tamm states appearing at the boundary of 
the bounded periodic structures: solid state lattices and 
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Ukraine, Kharkov, Ukraine, Akademicheskaja St., Kharkov 
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61085, Ukraine; Tel: +38057-720-3463; Fax: +38057-315-
2105; E-mail: girich82@mail.ru; tarapov@ire.kharkov.ua.

photonic crystals [1, 2]. An important feature of such surface 
Tamm states is the absence of tangential components of the 
Bloch wave vector at the interface, which means that any 
physical transfer of energy along the boundary is absent. 

A narrow transparency peak (the Tamm peak) appears 
in the spectrum bandgap of a bounded periodic structure. The 
position of the peak in the frequency bandgap depends on 
the parameters characterizing the whole system. This allows 
us to use this system in a variety of practical applications: 
for example, such as a controlled filter of electromagnetic 
radiation. The theoretical and experimental study of Tamm 
states in one-dimensional periodic crystals was discussed 
in a number of papers (see, e.g., [3, 4, 5, 6]).

The purpose of this paper is to study the analog 
of Tamm states for special bounded periodic structures 
consisting of microstrip elements, the elements of which 
are now widely used in various microwave applications. In 
particular, note the usage of microstrip photonic crystals for 
measurements of the permittivity of fluid substances [7]. 

We shall not dwell on the strengths and weaknesses 
of the existing theory of microstrip circuits [8]. However, 
it should be noted that because of complex mathematics, 
their detailed theory is far behind its practical applications, 
and is still far from being complete. However, there are 
a number of approximate formulas for quite accurately 
describing these waveguide systems, depending on their 
design features and the microwave frequency range [9-16].

If we are dealing with an infinite periodic structure, 
i.e., a symmetrical structure with respect to periodic 
translations by vector L , all fields at points separated by 
a vector translation L  are known to be connected by the 
relationships
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	 ( ) ( ) ( ), , exp , ,Bx y z L ik L x y z+ =E E ,	 (1)

	 ( ) ( ) ( ), , exp , ,Bx y z L ik L x y z+ =H H .

For electromagnetic waves in one-dimensional periodic 
systems, the quantity Bk , called the Bloch vector, is scalar. 
The conditions of Equations (1) are known as the Floquet 
condition (Floquet theorem) for the case of one-dimensional 
periodicity, and the Bloch condition (Bloch theorem) when 
the system is periodic in two dimensions or three dimensions. 
The proof of the statement in Equation (1) reduces to the 
known fact from linear algebra that at least one solution, 
U , exists for any square matrix, Â , which satisfies the 
equation ˆ µ=AU U  (see, e.g., [9]).

Below, we present our system as a chain of two-lines 
consisting of micro-stripes (see Figure 1). We use the well-
known formalisms of a normalized wave-transmission 
matrix, T̂ , a normalized wave-scattering matrix, Ŝ , and 
the normalized classical transmission matrix, Â , for 
description of the chain. All of these matrices are related 
to each other, so elements of one matrix can be expressed 
in terms of another (for details about the properties of these 
matrices, see [10-12]). Note here the important property 
of the transmission matrix of the system, namely, that the 
transmission matrix of a cascade (chain) of four-poles is 
the product of the transmission matrices for individual 
four-poles: 

	
1

ˆ ˆ
k

i
i=

=∏T T ,	 (2)

where k is the number of four-poles in the chain.

Considering the wave processes in a medium that 
represents a periodic sequence of identical four-poles, we 
single out two variants of the medium. The first variant is the 
sequence of elementary cells unbounded in both directions 
(Medium 1). The second variant is the same sequence of cells 
bounded from one side. In the latter case, the sequence of 
four-poles is usually supposed to be bounded with a Medium 
2, where the wave process becomes heavily attenuated. 
Tamm states are known to be surface states appearing at 
the interfaces of adjacent different photonic crystals. Here, 
we deal with one-dimensional systems of micro-stripes, so 
at the border point of two different subsystems, we shall 
speak only about the analog of the Tamm states. [1, 3, 4].

The process at the medium of the four-poles in 
approximation of the wave-transmission matrix is a 
voltage wave connected with a conditional wave process 
that takes place in a long line, equivalent to given system 
of four-poles. Here, properties of an individual four-pole 
are determined by its wave-transmission matrix, ˆ ( )ikT=T  
[10, 11], and (Figure 2)

	 1 11 2 12 2
n n n
inc inc refU T U T U= + ,

	 1 21 2 22 2
n n n
ref inc refU T U T U= + ,	 (3)

	 1 11 2 12 2inc inc refU t U t U= + ,

	 1 21 2 22 2ref inc refU t U t U= + ,

	 ( ) ( )1
1 2ik ikT tρ ρ−= .

Figure 1. The schematic for observation of the Tamm states. A is the chain of four-poles 
(Medium 1), B is the line with strong attenuation or the similar subsystem with different pa-
rameters (Medium 2), and C is the analog of the Tamm states. C shows the “concentration” 

of the electromagnetic energy near the interface of four-pole systems A and B.

Figure 2. The circuit of a four-pole.
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1
n
incU , 1

n
refU , 2

n
incU , and 2

n
refU  are the normalized incident 

and reflected voltage waves in the transmission lines at the 
input and output of the four-pole:

	 1 , 1 1 ,
n
inc ref inc refU Uρ = ,

	 2 , 2 2 ,
n
inc ref inc refU Uρ = .

Here, 1incU , 2incU , 1refU , and 2refU  are the complex 
amplitudes of the incident and reflected waves, and 1ρ  and 

2ρ  are the wave impedances of the input and output lines.

Note that in addition to a normalized wave in terms of 
the transmission matrix, as we shall see below an important 
physical meaning also has a normalized wave in terms of the 
scattering matrix ˆ ( )ikS=S . The elements of the scattering 
matrix are expressed in terms of elements of the matrix T̂  
in the following way:

	 1 11 1 12 2
n n n
ref inc refU S U S U= + ,

	 1 21 1 22 2
n n n
inc inc refU S U S U= + ,	 (4)

	

21

11 12 11 11

21 22 12

11 11

ˆ
1

TT
S S T T
S S T

T T

 
 

   = =   −    
 

S .

Here, ˆdetT = T .

One can mention here the physical meaning of the 
elements of both matrices T̂  and Ŝ , which are associated 
with a certain “characteristic” mode in the system of 
four-poles. In the wave theory, the role of such a “typical” 
mode is as a mode with zero parameter NΓ , the reflection 
coefficient from a load of the output line:

	 2

2

n
ref

N n
inc

U

U
Γ = .	 (5)

In other words, 2 0n
refU = . In this case,

	 1
11

2

n
inc

n
inc

U
T

U
= ,

	 1
21

2

n
ref

n
inc

U
T

U
= ,	 (6)

	 1
11

1

n
ref
n
inc

U
S

U
= ,

	 2
21

1

n
inc

n
inc

U
S

U
= .

The elements of the matrices 11T , 21S , and 11S  determine 
the properties of a four-pole loaded with a matched line at the 
definite forward direction of wave propagation (left to right). 
In particular, 11T  determines the ratio of the normalized 
voltages in this mode, and is called the transmission 
coefficient. 1

21 11S T −= , and has an individual name, the 
“transmittance.” 2

11D T −=  is used as the microwave 
power-transmission coefficient [7]. 11S  is the reflection 
coefficient in the input line with matched output line. The 
microwave power reflection coefficient from the microstrip 
photonic structure is defined as 2

11R S=  [7].

Figure 3a. An infinite peri-
odic chain of four-poles.

Figure 3b. The unit cell of the periodic structure of Figure 3a.
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2. Bloch Equation

We now consider an infinite periodic chain of 
identical four-poles (microstrip waveguides), and define 
the equation for the Bloch wave vector in such a structure. 
The transmission matrix for the elementary cell of the 
periodic structure, which consists of a complex four-pole 
(see Figure 3b), is the product of the wave-transmission 
matrices of four-poles constituting the elementary cell, 
and respectively including the following elements: the ith 
segment, a direct connection to the ith and ( )1i +  segments, 
the ( )1i +  segment, and the direct connection of the ( )1i +   
and ( )2i +  segments of the microwave transmission line. 
The infinite periodic chain of four-poles and its unit cell 
are sketched in Figures 3a and 3b.

We see that the unit cell that determines the period of 
our structure consists of segments with lengths 1L  and 2L
and of two connections, (1,2) and (2,1). The total period of 
the structure is therefore equal to 1 2L L L= + .

Using the wave-transmission matrices for the elements 
of the structure without considering attenuation [7],

	
( )

( )
exp 0ˆ

0 exp
S S

S
S S

ik L
T

ik L
 

=  − 
,

	

, 1 , 1

, 1 , 1
, 1

, 1 , 1

, 1 , 1

1 1

2 2
ˆ

1 1

2 2

S S S S

S S S S
S S

S S S S

S S S S

r r

r r
T

r r

r r

+ +

+ +
+

+ +

+ +

+ − 
 
 

=  − + 
 
 

,	 (7)

	 1 1
, 1 1,

S
S S S S

S
r r

ρ
ρ

− +
+ += = , ( )1,2s = .

We obtain the following expression for the transmission-
wave matrix of the unit cell:

	 1 1,2 2 2,1
ˆ ˆ ˆ ˆ ˆ

EC =T T T T T ,	 (8)

	 11 12

21 22

ˆ
EC EC

EC EC EC

T T

T T

 
 =
 
 

T 	 (9)

	 11 22 12 22
ˆdet 1EC EC EC EC

EC T T T T= − =T

(so the transmission matrix is unimodular). The elements 
of the matrix ˆ

ECT  are equal to

	 ( ) ( )1 1
11 1,2 1,2 1 1 2 24 2 expECT r r ik L ik L− −= + + +

	 ( ) ( )1 1
1,2 1,2 1 1 2 24 2 expr r ik L ik L− −+ − − − ,

	 ( ) ( )1 1
22 1,2 1,2 1 1 2 24 2 expECT r r ik L ik L− −= + + − −

	 ( ) ( )1 1
1,2 1,2 1 1 2 24 2 expr r ik L ik L− −+ − − − + ,

	
(10)

	 ( ) ( )1 1
12 1,2 1,2 1 1 2 24 expECT r r ik L ik L− −= − −

	 ( ) ( )1 1
1,2 1,2 1 1 2 24 expr r ik L ik L− −− − + ,

	 ( ) ( )1 1
21 1,2 1,2 1 1 2 24 expECT r r ik L ik L− −= − − +

	 ( ) ( )1 1
1,2 1,2 1 1 2 24 expr r ik L ik L− −− − − − .

We note that 11 22( )EC ECT T∗ =  and 12 21( )EC ECT T∗ = , as well 
as 2 2

11 211T T= + , so the wave matrix is a matrix of a 
reversible reactive four-pole [12].

The quantities Sρ  and Sk ( 1, 2)s =  entering 
Equations  (7) and (10) are related to characteristics of 
structural elements ( SW  is the width of the strip wire, Sh  
is the thickness of the microstrip-line substrate, and Sε  is 
the permittivity of the substrate). The wave resistance of the 
microstrip line according to [12, 14, 16] is therefore equal to

0.836
0.0724

377

1 1.735

S
S

S
S S

S

h

WW
h

ρ

ε ε
−

−

=
   +  
    	 (11)

where 12 .S Sk π −= Λ

The wavelength of the electromagnetic wave, SΛ
at the sth section of the microstrip line is defined by the 
known expression [7, 14, 16]

	

0.1255

0.0297

for 0.6

1 0.63( 1)

for 0.6

1 0.6( 1)

S S

SS S
S

S

S S S

SS S
S

S

W
hW

h

W
hW

h

ελ
ε

ε

ελ
ε

ε


≥

  
+ −  

 
Λ = 

<
 

+ −  
 

 	(12)
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where λ  is the wavelength in vacuum. The formulas in 
Equation (12) give dispersion relations for electromagnetic 
waves in the sth section of the microstrip line.

In what follows, we restrict our attention to the 
traveling-wave regime, which corresponds to the absence of 
the reflected wave in the system. The normalized classical 
transmission matrix relates currents and voltages on both 
sides of the four-pole [11], i.e.,

	 1 11 1 12 2
n n nU A U A I= + ,	 (13)

	 1 21 2 22 2
n n nI A U A I= + ,

	 1 2

1 2

ˆ
n n

n n

U U
A

I I

   
   =
   
   

,

where

	 n n n
l linc lrefU U U= + , n n n

l linc lrefI U U= − ,  ( )1,2l = .

@Under the traveling-wave conditions, the voltage and current 
are the same periodic functions of distance. Assuming the 
dependence ( )exp i t ikzω − , we have

	 ( ) ( ) ( )0 exp BU z U ik z= − ,	 (14)

	 ( ) ( ) ( )0 exp BI z I ik z= − .

For the structure of an infinite chain of periodic four-poles, 
from the periodicity of the structure, it follows that the 
displacement at period L  (where N  is a number of unit 
cells) gives

	 ( ) ( ) ( )1 exp BU N U N ik L+ = − 	 (15)

	 ( ) ( ) ( )1 exp BI N I N ik L+ = − .

With the use of Equations (13) and (15), we have

	
( )
( )

11

11

expˆ
exp

nn n
N BN N
nn n
N BN N

U ik LU U
A

I ik LI I
++

++

    
     = =
          

.	 (16)

Elements of the unimodular matrix Â , ˆdet 1=A , are 
expressed through elements of the matrix ˆ

ECT [11]:

ˆ =A 	 11 21 12 22 11 21 12 22

11 21 12 22 11 21 12 22

1
2

EC EC EC EC EC EC EC EC

EC EC EC EC EC EC EC EC

T T T T T T T T

T T T T T T T T

 + + + + − −
 
 − + − − − + 

	
	 (17)

	
ˆ ˆ

ECSp Sp=A T .

With the use of Equations (16) and (17), we obtain 

	 11 22
ˆ2cos EC EC

B ECk L SpT T T= = + .	 (18)

Finally, the Bloch equation (see, e.g., [13, 17]) has the form

	 cos Bk L

( )1
1 1 2 2 1,2 1,2 1 1 2 2

1cos cos sin sin
2

k L k L r r k L k L−= − + .	 (19)

Equation  (19) defines the Bloch wavevector, Bk . If the 
absolute value of the right-hand side of Equation  (19) 
exceeds one at some frequency, then Bk  is a complex 
number. It thus has an imaginary part, and the field dissipates 
when propagating inward through the medium, which is 
a periodic chain of four-poles. In these conditions, the 
propagation of electromagnetic energy through such medium 
is impossible. This is the so-called forbidden band (stop 
band) in the spectrum of electromagnetic waves. In the case 
of a real Bk , we are dealing with a pass band of the medium: 
the electromagnetic energy freely propagates through the 
medium (we consider a medium without attenuation). The 
appearance of pass and forbidden bands in the spectrum 
is a characteristic feature of any periodic super-lattice. 
Typical spectra for an “almost infinite structure” and a 
“finite structure” are given in Figure 4 (we neglected the 
absorption). The microwave power-transmission coefficient 
is 2

11D T −= . Gray regions correspond to the forbidden 
zones of the structures. It is easy to see that the frequencies 
of stop bands coincided for both super-lattices, and almost 
do not depend on the number of cells.

3. Tamm States

Surface Tamm states are known to appear (see, e.g., 
[1, 3, 4]) at the boundary separating the periodic super-
lattice medium (Medium  1) from Medium  2, in which 
the propagation of electromagnetic waves is impossible. 
Metals and a wire medium [4] are the most illustrative 
examples of such a Medium 2, but any other media with 
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negative permittivity that results in strong attenuation of 
electromagnetic waves (Figure 1) can be used as a Medium 2. 
In any case, if the region of attenuation of electromagnetic 
waves coincides for given frequencies with the forbidden 
band of a periodic subsystem, the Tamm state appears, 
namely, the concentration of the field energy at the interface 
separating two media takes place. A characteristic feature 
of the state (as was stressed above for the two-dimensional 
boundary of a photonic crystal) is a homogeneous field 
distribution along the interface plane, between media 1 and 
2. In the spectrum of the system, the Tamm state manifests 
itself as a sharp and narrow transmission peak, located at the 
frequency range where the forbidden states of both media 
coincide. The important case of the boundary Medium 2 can 
also be another periodic subsystem, the parameters of which 
differ from the parameters of Medium 1 (Figure 1). The 
only necessary condition is the coincidence of the bandgaps 
of both subsystems in a definite frequency range. A second 
subsystem (Medium 2) is a nonreflecting load line for the 
chain of four-poles that forms Medium 1. As in the case 
considered above, the Tamm states represent a sharp and 
narrow transmission peak in the frequency range where the 
forbidden bands of both media coincide. We consider this 
case in detail later. It should be mentioned here that due to 
the one-dimensionality of the considered problem, we can 
now speak only about an analog of the Tamm states, namely 
about the concentration of the electromagnetic field at the 
border points C between subsystems A and B. 

We stress that matching of all parts of the line is an 
important condition in both cases, because the equality 
of the wave resistances (impedances) of both subsystems 
at the point of their contact prevents the appearance of a 
reflected wave in the system of four-poles.

The scheme for experimental observation of the Tamm 
states is presented in Figure  1. The already-mentioned 
condition of the equality of the impedances A BZ Z=  at 
the connection point is the condition of the electromagnetic 
waves not reflecting at this point ( AZ  is the Bloch impedance 
of the chain of four-poles, and BZ  is the line impedance with 
strong attenuation or another subsystem chain, which are the 

loads of the chain A). The impedance condition provides the 
so-called mode matching between the source and the load, 
i.e., provides a traveling-wave regime for the line A. Note 
that if the matching condition is not satisfied between the 
load (B) and the line (A), in general it is possible to include 
some matching four-pole element, which ensures fulfillment 
of this condition. As a result, the traveling-wave regime is 
restored, i.e., the line will be matched to the load. Methods 
for calculation of matching four-poles are described, for 
example, in [18].

Using Equation (16) for the unit cell in the four-poles 
medium, we get

	 1

1

n
N

A n
N

U
Z

I
+

+

=

	
( )

12

11 exp B

A
A ik L

= −
−

	 (20)

	
( ) ( )

12
1/22

11 22 11 22

2
4

A

A A A A
=

 − ± + −  

.

Substituting the expressions for the matrix elements of 
the matrix Â , we express the impedance, AZ , in terms of 
known elements of the transmission matrix: 

	

( ) ( )
11 21 12 22

1/22
21 12 11 22

2

4

EC EC EC EC

A
EC EC EC EC

T T T TZ

T T T T

+ − −
=

 + ± + −  

	.(21)

Substituting the matrix elements of the transmission matrix, 
Equation (10), we obtain the following expressions for the 
quantities entering the numerator and denominator: 

Figure 4a. The spectra for structures with various 
number of unit cells: The spectrum for an “almost 

infinite” periodic super-lattice (which means a 
very large number of unit cells N, ( 1000N = ) 

Figure 4b. The spectra for structures with 
various number of unit cells: The spectra for a 

finite structure with 8N =  (see Figure 5).
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	 11 21 12 22
EC EC EC ECT T T T+ − −

	 ( )1 1 2 2 12 2 2 1 12 sin cos sin cosi k L k L r k L k L= + ,

	 ( )1
21 12 12 12 1 1 2 2sin sinT T r r k L k L−+ = + ,	 (22)

	 11 22T T+

	
( )1

1 1 2 2 12 12 1 1 2 22cos cos sin sink L k L r r k L k L−= − + 	

Note that corresponding expressions to Equation (22) were 
calculated for the infinite chain.

4. Numerical Calculations

In this section, we present some results of numerical 
calculations carried out for the system consisting of two 
subsystems with various parameters of four-poles [15]. 
The corresponding whole system is presented in Figure 5a.

The simulation of the model structure was performed, 
and the details are shown in Figure 5a. The structure was a 
microstrip line with the following parameters. Two copper 
upper strips were placed on the surface of a dielectric 
plate (Taconic TLC-30) with 3 0.003iε = +  and thickness 

0.5h = mm. The lower strip was a substrate strip. The upper 
strip was made of two periodic structures/subsystems A and 
B, connected in series. Each of these subsystems consisted 
of eight rectangular elements of equal width 1.233D =
mm, and their lengths were correspondingly 2 5.0AL =
mm and 2 14.2BL = mm. These elements were connected 
with narrower rectangular elements correspondingly having 
equal widths 3.0d = mm, and lengths 1 5.0AL = mm, mm. 
The characteristic impedance of such a microstrip structure 
equals 50 ohms at the “middle” frequency 9f = GHz.

Note that in Figure 5b we can see a distribution of 
electromagnetic-wave energy in the system. We see the 
concentration of electromagnetic energy near the PC A/

Figure 5. (top) The system used 
for the numerical calculations. 

Both super-lattices A and B con-
sisted of eight elements. (bottom) 

The calculated spatial distribution 
of electromagnetic wave energy 

for the system of two subsystems.

Figure 6c. The results of the numerical calculations 
for systems PC A and PC B: The impedances for the 

subsystems A (solid line) and B (dashed line).

Figure 6a. The results of the numerical calculations 
for systems PC A and PC B: the forbidden bands for 

subsystems A (solid line) and B (dashed line).

Figure 6b. The results of the numerical calcula-
tions for systems PC A and PC B: The Tamm 

peak at the frequency of  9.7 GHz.
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PC B interface. Such a concentration of energy is the analog 
of the Tamm state for our system. 

Figure 6a presents two stop bands of two separate 
subsystems (PC A and PC  B). The coincidence of two 
forbidden bands of separate subsystems takes place in the 
region of approximately 9 GHz to 11 GHz (the values of the 
transmission coefficient, D , are plotted along the y axis). 
The characteristic sharp increase of the microwave power-
transmission coefficient, D , near a frequency of 9.7 GHz 
(Figure 6b) corresponds to the analog of the Tamm peak.

For the purpose of detailed analysis, we carried out 
numerical calculations in the vicinity of the Tamm peak, 
namely in the range of  9 GHz to 11 GHz. The results are 
presented in Figure 7.

As was stated above, the frequency position of the 
Tamm peak depends on the characteristics of the system. 
This feature of the Tamm peak is very important for various 
practical applications, because it enables us to control the 
position of the narrow transparency peak by changing the 
parameters of the system. 

In Figure  8, we present the results of numerical 
calculations of the dependence of the position of the Tamm 
peak on the magnitude 2

BL  (the length of elements of the 
subsystem (B)). Here is also shown the dependence on 

2
BL  of the characteristic frequency ( ( )ZA ZBf = ), which is 

the frequency of impedance equality for both structures. 
Both dependencies, ( )2

B
TSf Lϕ=  (open squares) and 

( ) ( )2
B

ZA ZBf Lϕ= =  (the solid line) coincided, and 
demonstrated almost linear behavior. We saw that an increase 
of 2

BL  shifts the Tamm-state’s frequency position toward 
the lower frequencies.

In addition, an important question is the investigation 
of this dependence as a function of the number of unit 
cells (N) in the system. According to Figure  8a, for 

4,6,8,10,12,14N = , all curves coincided with high 
accuracy. Only a small divergence took place in the vicinity 
of the stop band edges (Figure 8b): the divergence was higher 
for smaller N. This tendency is quite natural, because with 
the decrease of N, the system becomes more transparent, 
and the quality factor of the Tamm peak also decreases. The 
energy dissipation thus begins to play a role, and leads to 
the shift of the Tamm peak’s frequency.

Figure 7b. The frequency dependence of the trans-
mission coefficient in the vicinity of the Tamm peak 

(9 GHz to 10 GHz): The forbidden band for the joined 
subsystems and the position of the Tamm peak.

Figure 7a. The frequency dependence of the trans-
mission coefficient in the vicinity of the Tamm peak 

(9 GHz to 10 GHz): The forbidden bands for each of 
subsystems A (solid line) and B (dashed line).

Figure 8b. The Tamm-state frequency position as a 
function of the value of 2

BL  for various values of N: 
A detailed picture of the region from 10.60 GHz to 

10.65 GHz on the band’s edge.

Figure 8a. The Tamm-state frequency position as a func-
tion of the value of 2

BL  for various values of N: for the 
whole stop band, 8 GHz to 10 GHz.
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5. Conclusions

1. 	 The propagation of electromagnetic waves in systems 
of infinite and bounded periodical chains of four-poles 
was analyzed. The equation for the Bloch wave vector, 
determining the band structure of the infinite chain, was 
formulated and numerically solved.

2.	 A concept of the Tamm state was formulated for a 
periodic chain consisting of two periodic subsystems 
with different constitutive parameters. We revealed that 
this state gives rise to a concentration of electromagnetic 
energy in the vicinity of the interface of the two 
subsystems. The Tamm frequency peak corresponding to 
the Tamm state is located in that frequency range where 
the forbidden bands of the two subsystems coincide.

3.	 The Tamm peak’s position depends on the parameters 
of the system, and can be changed if the parameters 
are changed. This feature is of great value for various 
practical applications of systems with Tamm states.

4. 	 Detailed numerical calculations were carried out for 
the system consisting of two periodic subsystems with 
differing lengths of their four-pole elements. These 
numerical calculations verified all of the properties of 
the Tamm states as stated above.
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