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Abstract—The paper discusses the methodological questions arising
in the study of open electrodynamic structures of resonance quasi
optics via time-domain technique. As demonstrated, all of the
interesting physical characteristics inherent in these objects (including
the objects with various frequency-selective elements) can be obtained
through the numerical solution of the relevant model initial bowldary-
value probhxns. For the first time, a finite difference method equipped
with the exact local ‘absorbing’ conditions on artificial boundaries has
been applied for the solution of this kind of open problems. The
results of the computational experiments performed have verified the
possibility of the efficient selection of oscillations in dispersive open
resonators with diffraction gratings, among them the resonators with
gratings operating in the quasitotal nonspecular reflection mode.
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1. INTRODUCTION

Many authors (A. G. Fox, T. Li, G. D. Boyd, V. P. Bykov,
V. A. Yepishin, Ye. I. Nefedov, C. W. Erickson, T. T. Fong,
R. F. Harrington, and others) have contributed in the study on open
resonators (OR) in frequency domain. For example, a great body
of interesting information has been obtained owing to a waveguide
concept of the processes in open oscillating systems suggested and
developed by L. A. Weinstein [1]. However, if the mirrors possess
a complex geometry, even the most fruitful approach (see works
of V. P. Shestopalov, V. N. Koshparionok, P. N. Melezhik, and
A. Ye. Poyedinchuk) provides nothing but analytical description
of the spectrum (discreteness, finite multiplicity and other general
characteristics resulting from Fredholm’s theorem for compact
finite-meromorphic operator-functions), qualitative assessment of its
components, and approximate estimation of the components’ action
on the formation of transient characteristics of an OR. As to the time-
domain technique, it has been little used for the analysis of composite
open structures with resonance elements. In this connection, mention
may be made of Chapter 16 ‘Microcavity ring resonators’ in [2] as of
the well-thought-out approach to the above problem.

In this paper, we demonstrate the considerable possibilities of the
integration of the frequency-domain and the time-domain methods
in the analysis of complex resonance structures. Using OR with
cylindrical mirrors and OR with diffraction gratings as examples, e
treat a number of methodological problems arising in the approach
suggested.

2. OR OF CLASSICAL GEOMETRY

The computational experiments discussed below were carried out with
the use of the algorithm developed in [3]. The initial-boundary value
problem
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for the E-polarized field U(g, t) is discretized by the finite-difference
method on a rectangular grid of Cartesian coordinates y and z. Here
and in Fig. 1, σ = σ0η0, ε(g) and σ0(g) are the relative permittivity
and conductivity of the medium inhomogeneities respectively; η0 =
(µ0/ε0)1/2 is the impedance of free space; the functions F, ϕ, φ, σ,
and ε− 1 are finite in R2, while their supports belong to QL over the
time interval 0 ≤ t ≤ T̃ .

When closing the rectangular analysis domain QL by the
boundary L = QL\QL with QL being the closure of QL, the following
exact local ‘absorbing’ conditions are used:
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Figure 1. Geometry of the problem (1).
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The inclusion of these conditions into original problem (1) does not
change the problem qualitatively and does not distort its solution (the
relevant analysis has been presented in [4, 5]). The problem of corner
points of the boundary L has been resolved rigorously in the framework
of relationships (2)–(4) (here Vj(g, t, ϕ), j = 1, 2 are certain auxiliary
functions).

Throughout this paper the boundaries of the analysis domain QL

coincide with the boundaries of the figures with the time dependence of
the electric field intensity U(g, t) = Ex at the points g = {y, z} ∈ QL.

The parameters of the scatterers (ε(g) and σ(g)), the ‘current’
sources (F (g, t)), and the ‘momentary’ sources (ϕ(g) and ψ(g)) are
specified by step-functions like χ[f1(g)]χ[f2(g)] . . . χ[fm(g)], where χ is
the Heaviside function. All metal parts of the resonators, radiators,
etc. are assumed to be copper; all dimensions are given in centimeters.
For example, the OR mirrors with spectral characteristics presented in
Figures 2–4 are described by the following functions:

σ(g) = 2.19 · 108χ[5 − |y|]χ[4 − |z|]χ
[
z2 + (|y| + 4.5)2 − 92

]
(an OR with a confocal geometry (Figs. 3, 4); the radius R of the
mirrors and the mirror spacing L along the principal resonator axis
are equal to 9.0),

σ(g) = 2.19 · 108χ[5 − |y|]χ[4 − |z|]χ
[
z2 + (|y| + 6.5)2 − 112

]
(an OR with an ‘under-confocal’ geometry; R = 11.0 and L = 9.0),
and

σ(g) = 2, 19 · 108χ[5 − |y|]
{
χ[4 − |z|]χ

[
z2 + (y − 4.5)2 − 92

]
+ χ[4 − |z + 2|]χ

[
(z + 2)2 + (y + 4.5)2 − 92

]}
(an axis discontinuity in a confocal OR (Fig. 4b); the center distance
in a vertical direction is equal to 2.0).
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Figure 2. Spectral characteristics of the source (a), of the resonators
with confocal (b) and ‘under-confocal’ (c) geometry, and of the
resonator with the principal axis discontinuity (d): k̃ = 4.2; g = {0; 0}
(a) and g = {0.2; 0.2} (b–d).
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Figure 3. Configuration, the order (in frequency) and approximate
values of Rek for high-Q free oscillations in the confocal resonator.
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The source exciting an OR as well as the observation time interval
0 ≤ t ≤ T̃ should correlate with the purpose of the particular problem.
An example will make this clear. In a set of the experiments discussed
in the paper, the ‘current’ source has the form

F (g, t) = 10χ[3.5 − |y|]χ[1.5 − |z+1|] cos
(
β1k̃y+β2

)
cos

(
β3k̃z+β4

)
× exp

[
−(t− T )2/4α̃2

]
cos[k̃(t− T )]. (5)

This function possesses seven free parameters: k̃, α̃, T , and βj , j =
1, 2, 3, 4. The first parameter (k̃) specifies an amplitude center of the
primary signal in the spectral domain, i.e. the maximal absolute value
of the function

Ũ0(g, k) =
1
2π

∞∫
−∞

U0(g, t)eiktdt ≡ F [U0(g, t)](k) ↔ U0(g, t) (6)

with U0(g, t) being the field generated by the source F (g, t) in R2 space
with ε(g) ≡ 1 and σ(g) ≡ 0. This parameter, in combination with α̃,
determines the frequency band [k̃−b/α̃; k̃+b/α̃], where the normalized
spectral amplitude of the pulse U0(g, t)(|Ũ0(g, k)|/|Ũ0(g, k̃)|) does not
go below some value γ. In the t-axis, the signal U0(g, t) ‘occupies’ an
interval T − cα̃ ≤ t ≤ T + cα̃ such that the value |U0(g, t)|/|U0(g, T )|
outside this interval does not exceed γ. The coefficients b and c deduced
from the familiar relationship

1
2
eiTk

[
e−α̃2(k−k̃)2 + e−α̃2(k+k̃)2

]
↔ π1/2

α
e−(t−T )2/4α̃2

cos[k̃(t− T )]

are listed in the Table 1 for several fixed values of γ. The parameters
βj allow tuning the source to generating oscillations of the particular
symmetry class or, on the contrary, oscillations of all types. With
the help of these parameters we will also impart a definite structure
to U0(g, t) (for example, a structure of a near-plane wave with the
wavelength 2π/k̃).

Now we dwell on the requirements imposed on the above-listed
parameters when analyzing spectral characteristics of an OR (see
Fig. 2). It is apparent that k̃ should be made coincident with the center
of the frequency range while α̃ is to be chosen so that the level of the
normalized spectral amplitudes of U0(g, t) within this range could not
exceed 0.1 or, better still, 0.5 (to prevent noticeable distortions of some
‘ideal’ picture, which is observed when |Ũ0(g, k)| remains the same
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Table 1.

γ = 0.001 γ = 0.01 γ = 0.1 γ = 0.5
b ≈ 2.63 2.14 1.52 0.83
c ≈ 5.25 4.29 3.04 1.66

over the whole frequency range). The left boundary of the interval
T − cα̃ ≤ t ≤ T + cα̃ is placed at the point t = 0 in an effort to cut the
computation time T̃ . For the expected spectral characteristics of the
source to be conserved, |U0(g, 0)| (U0(g, t) = 0, t < 0) must correspond
to 0.001 ≤ γ ≤ 0.01. This requirement along with the parameter α̃
determines the efficient signal length 0 ≤ t ≤ 2T and, hence, the delay
time T . At this point our interest is oscillations of every mode. Then,
the field U0(g, t) should not be orthogonal to any one of the possible
free oscillations in the system (this requirement is controlled by βj).
The efficiency of the excitation of all spectral components of the total
field U(g, t) is largely depended upon the spatial dimensions of the
source; by extending the range of g values where F (g, t) �= 0 we can
substantially reduce the computation time. The lower limit (T̃ = 5T )
of possible values of T̃ is governed by the following evident requirement:
in a time 0 ≤ t ≤ T̃ , the OR has to spend the time 0 ≤ t ≤ 2T operating
in the forced oscillation mode, then, to get rid (at the cost of the
radiation into free space) of spectral components that are incapable
of forming stable oscillations in the resonator (2T ≤ t ≤ 3T ), and,
finally, to provide a way for high-Q oscillations to show themselves
against a background of low-Q oscillations (3T ≤ t ≤ 5T ). In this
case, the analysis of spectral characteristics of an OR in a frequency
band reduces to the following operations: the calculation of U(g̃, t) at
the point g̃ in the resonator as a function of time t ∈ [0; T̃ ] and, then,
the analysis of the Fourier transform Ũ(g̃, k) ↔ U(g̃, t) (formula (6):
U(g̃, t) is assumed to be equal to zero outside the interval t ∈ [0; T̃ ]).

When analyzing the isolated oscillations Ũn(g, kn) separated from
the complete spectrum of the OR, the interval [k̃ − b/α̃; k̃ + b/α̃](k̃ ≈
Rekn) has to involve no resonance points adjacent to Rekn while a
magnitude of spectral amplitudes of U0(g, t) should be insignificant
at the ends of this interval. It is obvious that this requirement can
be weakened considerably through using sources of definite symmetry
class.

In the frequency range [3.4, 5.0] the normalized spectral
amplitudes of the pulse U0(g, t) (Fig. 2a) generated by the source (5)
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with α̃ = 1, T = 6, β1 = 1, β2 = π/4, and β3 = β4 = 0 do not go below
0.3. During the time T̃ = 150, all resonators of classical configuration
mentioned above extract efficiently the spectral components associated
with the high-Q quasi-harmonic oscillations (sharp peaks of |Ũ(g, k)|
in Fig. 2b–d). The parameters of the amplitude centers defining the
eigenfrequencies of the H0n1-oscillations in the resonator spectra are
near-identical even under sizable deviations of R/L from the unity
for confocal, ‘under-confocal’, and ‘over-confocal’ (R < L) geometries.
Only the distinct capacity for sustaining the oscillations with two or
more field variations along the vertical axis is easily observable: it
is considerably greater for confocal resonators. As to the resonator
with the axis discontinuity, its spectrum possesses a greater number of
distinctive features: theH0nm-oscillations withm ≥ 2 become unstable
while the associated spectral amplitudes of U(g, t) are reduced to the
background level. However, even with small intersection area of mirror
projections, this kind of resonator is capable to sustain high-Q free
H0n1-oscillations (see, for example, Fig. 4b).

From the spikes of |Ũ(g, k)|, the approximate values of Rek (k
stands for the resonator eigenfrequency) are easily determined for every
high-Q free oscillation that is sustained by the given OR. These values
can be refined and the field configuration of the related free oscillations
can be visualized by the application of the peculiarly adapted source
F (g, t). The source parameters (Fig. 3, the ‘confocal’ geometry) were
chosen with regard to the oscillation mode and its Q-factor. In
some instances, two or three related ‘iterations’ were called for. If
a quasimonochromatic component associated with the free oscillation
Ũn(g, kn) dominates in the field U(g, t) after termination of the source
operation, the changes of the field intensity are determined [6] by the
factor exp(−|Imkn|t). This fact allows calculating both Imkn and the
Q-factor Qn = Rekn/2|Imkn| of the corresponding free oscillation with
the use of the results similar to those presented in Fig. 4. The source
(5) with α̃ = 20, T = 60, β1 = 1, β3 = β4 = 0, β2 = π/2 (Fig. 4a) and
β2 = π/4 (Fig. 4b) provides all necessary conditions for this type of
calculation. Evidently, the total observation time T̃ can be increased,
if highly accurate Imkn is needed.

3. DISPERSIVE RESONATORS WITH GRATINGS

Now we apply the approach presented in the previous section to the
analysis of OR with diffraction gratings. It should be stressed that
the computational experiment has to start from the clear view of all
special features in the ‘operation’ of the dispersive element during
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forming high-Q oscillations in a structure. We begin with the analysis
of spectral characteristics of the Fabry-Perot resonator (Figs. 5, 6): a
resonator with plane parallel mirrors

σ(g) = 2.19 ·108χ[4−|y|]{χ(z+0.3)χ(−z)+χ(10.3−z)χ(z−10)} (7)

(the resonator width is equal to 8.0 while the mirror spacing is equal
to 10.0). A source

F (g, t) = 10χ[3 − |y|]χ(z − 2)χ(8 − z) cos(k̃z + β)

· exp
[
−(t− T )2/4α̃2

]
cos[k̃(t− T )] (8)

excites in the structure nothing but symmetrical oscillations with
respect to the axis y = 0. The normalized spectral amplitudes of
the relevant field U0(g, t) for α̃ = 1 and T = 6 in the frequency range
[k̃−1, k̃+1] do not go below a level γ = 0.23 (Fig. 5a). In the calculation
of frequency characteristics Ũ(g, k) ↔ U(g, t), 0 ≤ t ≤ T̃ = 150 (see,
for example, Fig. 5b and Fig. 6b), these parameters of the function
F (g, t) (β = 0.08k̃ for k̃ = 8 and k̃ = 14; β = 0.08k̃ + π/4 for k̃ = 10
and k̃ = 12) remain the same. The tuning of the source to the analysis
of the isolated high-Q oscillations (for example, H0,1,38-oscillation in
Fig. 5c and H0,1,26-oscillation in Fig. 6a) is achieved through increasing
the magnitude of the parameters α̃, T , and T̃ up to the values 20, 80,
and 300, respectively. The coordinates y = 0 and z = 10−π/2k̃ of the
points g (the resonator axis; the distance from the upper mirror is equal
to one fourth of the probing wavelength) where time characteristics of
U(g, t) are determined, remain constant and will be changed in the
case of the resonator with two selective mirrors.

Let us replace the bottom mirror of the resonator (7) with a metal
grating (Fig. 6a)

σ(g) = 2.19 · 108χ[4 − |y|]{χ(−z)χ(z + 0.235)χ[cos(2πy/0.543)
− cos(π/2)] + χ(−z − 0.235)χ(z + 0.535)}

Here the following grating parameters have been used: the period
l = 0.543, the height h = 0.235, and the slot width d = 0.5l. The
reflection area coincides with the half-plane z > 0. The upper limit of
the single-wave range [6, 7] for the corresponding perfectly conducting
infinite structure excited by a normally incident plane wave (α = 0;
the angle of incidence is counted of anticlockwise from the z-axis)
is determined by the parameter k±1 = 11.57 (or, by the frequency
parameter κ±1 = l/λ = lk±1/2π = 1). In this range |a0(k)| = 1;
the value of arg a0(k) varies between 180◦ and 260◦ (where an(k) are
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Figure 5. On the analysis of open dispersive resonators: a − k̃ =
12, g = {0; 4.72}; b− k̃ = 12, g = {0; 9.87}; c− g = {0; 9.87}.
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(b)

Figure 6. A comparison between spectral characteristics of the Fabry-
Perot resonator (thin lines) and the dispersive resonator with a grating
(bold lines): g = {0; 10 − π/2k̃}.

complex amplitudes of spatial harmonics of the field resulting from the
excitation of the periodic structure by a plane wave, see Figures 135
and 158 in [7] for amplitude-frequency characteristics of the grating).
From the standpoint of an observer stationed in a far-field region, there
is no distinction in the ‘operation’ of the grating and the perfectly
conducting plane z = (±π − arg a0)/2k. In the frequency range
k±1 ≤ k ≤ 13.9, the efficiency of a specular reflection abruptly falls
because of the energy redistribution between the spatial harmonics
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with the numbers 0, +1, and −1, then it increases again up to the
unity (k = 17.3) and so on.

If we start from the assumption of the energy balance relationship
for perfect infinite structures [6–8] in an effort to predict a nature of
changes in the OR spectrum, the result will be as follows. Up to the
threshold point k±1, the distribution of spectral amplitudes |Ũ(g, k)| of
the field U(g, t) remains mainly unchanged: the resonance frequencies
are driven towards the values arg a0 �= π, being shifted slightly along
the k-axis, while Q-factor of the corresponding free oscillations is
changed moderately. Beyond the point k±1, the ratio between the levels
of local amplitude centers of |Ũ(g, k)| for the dispersive resonator and
the Fabry-Perot resonator will coincide (with slight deviations) with
|a0(k)|.

What actually happens is that the above assumption turns out to
be only partially valid (see Fig. 6b): a sharp boundary at the point
k±1 spreads over the interval 10.0 < k < 13.0 (0.86 < κ < 1.12), where
the amplitudes |Ũ(g, k)| reduce down to the nonresonant background.
The chief cause (Cf. the data presented in Fig. 7a and Fig. 7b) is in the
anomalous energy redistribution of the forced oscillations between the
regions adjacent to the upper (non-selective) mirror and the bottom
(grating) mirror. The relative rise in the intensity of the near-zone field
and its efficient radiation into free space is ensured by the ‘trapped’
harmonics, which exhibit a standard behavior (for the spectral domain)
in the vicinity of the threshold point k±1.

Replace now the bottom plane mirror of the resonator (7) with a
finite grating

σ(g) = 2.19 · 108χ[4 − |y|]{χ(−y sin η − z cos η)
×χ(y sin η + z cos η + 0.26)χ[cos(2π(y cos η − z sin η)/0.75)
− cos(0.15π)] + χ(−y sin η − z cos η − 0.26)
×χ(y sin η + z cos η + 0.56) (9)

(see Fig. 8a; η = 24.06◦ is the angle of the structure rotation about
the point g = {0; 0} counted clockwise).

The infinite periodic structure (9) with the parameters l =
0.75, h = 0.26, and d = 0.85l in the frequency range 8.7 < k <
11.9 (1.04 < κ < 1.43), when ‘operating’ in the autocollimation mode
on the ‘−1’ spatial harmonic (see [6, 7]), concentrates the energy of the
secondary field almost entirely in a plane wave propagating towards the
incident direction. These data shown in Fig. 133 in [6] give grounds to
suggest the following: if a plane mirror of the Fabry-Perot resonator
(7) is replaced with the grating (9) properly oriented in the space (this
condition determines the choice of the parameter η), then the modified
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(a)

(b)

Figure 7. The field intensity near the dispersive resonator mirrors:
a− k̃ = 7.94; b− k̃ = 11.52.

resonator will also sustain high-Q oscillations for 8.7 < k < 11.9.
However, outside this range, the resonator spectrum turns out to be
substantially sparse. Figures 8 and 9 confirm this fact. The angle
α = η corresponds to the frequency k = 10.27 of the autocollimation
reflection into the grating spatial harmonic with the number −1.
Therefore, a dispersive resonator with spectral curves shown in Fig.
8a replicates (without noticeable distortion) the characteristics of the
original resonator in the relevant narrow frequency range. The degree
of the excitation of one of the oscillations captured by this band has
decreased slightly whereas the other one has increased. Outside this
range, the spectrum gradually acquires the form of a nonresonant
background: the plane stationary mirror does not allow the frequency
properties of the periodic structure, specifically, its capacity for nearly
total autocollimation reflection to be fully realized. The situation can
be changed in two ways. The first way calls for the continuous spatial
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Figure 8. Variations in spectral characteristics of the Fabry-Perot
resonator (thin lines) with a grating ‘operating’ in the autocollimation
mode in place of the bottom mirror: k̃ = 10; t = 142; g = {0; 9.84}.

reorientation of the mirrors according to the condition 2κ sinα = 1;
another way is associated with the replacement of the plane mirror in
the cylindrical one

σ(g) = 2.19 ·108χ[4−|y|]χ(10.3−z)χ
[
y2 + (z +R− 10)2 −R2

]
(10)

(see Fig. 8b–11 with R being the radius of a mirror curvature). Com-
parison characteristics (approximate values of Rek, field configuration,
and Q-factor) of the high-Q oscillations retained in the spectrum are
presented in Figures 10 and 11. As to the spectrum rarefication outside
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Figure 9. Spectral characteristics of the dispersive resonator (bold
lines) and the Fabry-Perot resonator (thin lines) in the frequency range
7 ≤ k ≤ 13 : g = {0; 10 − π/2k̃}, R = 50.

the ‘principal’ band 9 < k < 11, the observed effect here is in complete
agreement with the expected one (see Fig. 9).

In closing, one additional example can be given (Fig. 12), where
both of plane mirrors of the original resonator (7) are replaced with
gratings. The distance along the axis y = 0 between the bottom mirror
(9) and its precise replica, properly positioned in the upper part of
the space, remains equal to 10.0. A comparison of the plots given
in Figures 9 and 12 (the characteristics of the dispersive resonator
(9), (10) with R = 50 are duplicated in the bottom fragment by
the dotted line) allows the following conclusion: the ‘focusing’ ability
of two grating mirrors ‘operating’ in the mode of autocollimation
reflection can be considerably greater as compared with two parallel
plane mirrors or with the system ‘cylindrical mirror — grating’. The
reason is that in this case the condition 2κ sinα = p, p = 1, 2, . . ., is
realized automatically, which is necessary for forming stable oscillations
according to the scheme ‘incident wave — reflected wave propagating
in the opposite direction’. Two grating mirrors resolve the problem of
the adoption of narrow-band effects of the total nonspecular reflection
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Figure 12. The high-Q H0,1,32 - (a) and H0,1,33 - (b) oscillations in
the resonator with two selective mirrors. Spectral characteristics of the
dispersive resonator and the Fabry-Perot resonator (thin lines) in the
frequency range 7 ≤ k ≤ 13 (c).
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in the synthesis of single-mode resonator structures. A set of such
mirrors (two, three or more) allows general geometry and size of an
OR, Q-factor, configuration and spatial distribution of a field intensity
to be varied almost arbitrarily.

4. CONCLUSIONS

According to [6], the nonspecular total (or near-total) reflection mode
in periodic structures is connected with the excitation of natural free
oscillations. Hence, the efficient selection of oscillations in an OR with
gratings calls for a combination of resonant conditions for the original
open quasi-optical system and the dispersive element involved. This
problem is very complicated. It can be resolved adequately only in the
framework of the complex approach, which utilizes a broad spectrum
of methods and results of both the frequency domain and the time
domain. Our paper, providing support for this view, will hopefully be
found useful for further investigations.
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