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Abstract—The paper demonstrates, relying on spectral theory, how
the problem of converter synthesis may be reduced to the search of real
eigen-frequencies located in the higher sheets of Riemann’s surface for
the corresponding eigen boundary value problems (spectral problems).
Numerically this problem is solved efficiently by incorporating
algorithms, which have been developed for the solution of spectral
problems, into the synthesis problem.
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1. INTRODUCTION

The efficient synthesis of mode converters, constructed with waveguides
and gratings, is on demand in different fields of millimeter wave
applications. The major goal of the synthesis problem is to obtain
the required results by most efficiently fitting the specifications. The
adequacy of the mathematical model of the simulated electromagnetic
process is certainly of special importance. Often, for increased
efficiency, several parameters and physical features of the process may
escape attention. Such a situation appears in simulations of resonant
scattering. As an example of the beneficial results that can be obtained
from extending the mathematical description of models of periodic
and waveguide resonators, the analytic continuation of the diffraction
problem into the non-physical domain of complex frequencies can
be considered. It is noteworthy that the physical meaning of the
mathematical continuation process is not always clear [1-3]. The
accurate study of singularities of operators and functions describing
scattering processes as functions of complex variables provides the
investigators with important information. As is known, the local
behavior of a function of complex-valued parameters is determined
by its singularities. The implementation of the idea of analytic
continuation of a function into the domain of complex parameters is
complicated by the necessity to define the continuation of the original
diffraction problem into the complex domain of parameters in such
a way that it is physically meaningful. Otherwise such non-physical
objects as continuous spectra do appear.

This requirement results in a consideration of the 2D problems
in such domains of complex variables as multi-sheet Riemann surfaces
with logarithm-type branch points in the case of compact scatterers
or as algebraic (of the second order) in the case of gratings and
waveguides.

The complex amplitudes of the fields in this domain of parameters
are meromorphic functions of the complex-valued frequency. This
property of the fields and amplitudes opens new perspectives for
their qualitative investigation. The spectral theory of open compact,
waveguide type , and periodic resonators, developed by the efforts of a
considerable number of scientists [1-3], has created a reliable common
methodological background for the solution of numerous important
mathematical, electromagnetic and applied problems of resonant wave
scattering.

The crucial influence of the spectrum elements (that are the
singularities of the analytic continuation of the solutions of diffraction
problem into the Riemann surface) on the formation of resonance
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responses of the structure to any (stationary or non-stationary)
excitation has in particular been demonstrated. It has resulted in new
insights and new ways of treating such electromagnetic features as total
reflection and transmission performed by semi-transparent structures,
high-Q resonances, complete mode conversion, and others [1, 4].
The bounds of validity of the classical radiation principle, of the
limit absorption principle, and of the principle of limit amplitude
used for extracting the single physically meaningful solutions of
elliptic boundary value problems in non-classic (unbounded) domains
are clearly defined [1, 5]. An analytical description of threshold
phenomena (Wood’s anomalies) in the vicinity of cutoff frequencies
of new harmonics in the spatial spectrum of gratings and waveguide
discontinuities has been given in [1, 6]. It is noteworthy that
exploiting the same scheme of analysis with only a replacement of
the complex frequency parameter by a complex distance can provide
a mathematically rigorous solution to the problem of determining the
field singularities at the edges of a scatterer. These and several other
resukts have been obtained while analyzing the singularities of the
analytic continuation of the solution of diffraction problems into the
first basic sheet of the Riemann surface.

In this paper, we introduce into consideration the higher sheets.
Finding out the real spectral points on these sheets provides a
possibility to solve applied problems which are important for resonant
quasi-optics, for diffraction electronics, for mm-wave and antenna
units, whose operation is based on the conversion of surface waves
into spatial waves.

The problem is to determine whether the grating or waveguide
with a general cross section is able to perform a complete conversion of
homogeneous or non-homogeneous wave packets, with given numbers
of components (harmonics or modes), into others that do not coincide
with the given packets over all set of numbers of partial components
of the spatial spectrum of the structure. If the answer is yes, for what
parameter values can this be done.

This problem could hardly be solved by means of traditional
methods of diffraction theory. But the solution may be arrived at using
the results of a direct investigation of the diffraction characteristics of
periodic gratings and discontinuities in multi-mode waveguides, which
exhibit the property of complete or close to complete conversion of
one propagating wave into another. In the electromagnetic theory
of gratings, the complete non-specular wave reflection in the auto-
collimating mode or with a large telescope factor (7, 8] may be
considered as the most interesting case. In waveguides, the most
impressive example may be the phenomenon of strong transformation
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of the principal mode into a higher one, discovered in simple
and complicated waveguide bends [9], coaxial junctions of circular
waveguides [10], and others. The search for such regimes has been
carried out with efficient algorithms for the solution of diffraction
problems, developed on the basis of the semi-inversion method (7, 11],
exploiting parametric optimization techniques.

In the present paper, a new approach is suggested for the
solution of more complicated problems. It is based on the analysis
of the spectrum of the structures under consideration. Complex
eigen-frequencies (poles of analytical continuations of the solutions of
diffraction problems) of open periodic and waveguide resonators may
come to the real axis of either principal or higher sheets of the Riemann
surface. In the case of higher sheets, the existence of such real eigen-
frequencies determines the possibility of implementing the phenomenon
of complete conversion of one wave packet into another [1, 12].

In the first part of the paper, a brief theoretical background of the
method is given for a reflecting grating, that is chosen as a model. The
principal statements of spectral theory [1] are reformulated in terms of
the model considered. The second part demonstrates the efficiency of
the suggested method for certain grating and waveguide geometries.

—2r.

Figure 1. Configuration of the reflective structure.

2. THEORETICAL BACKGROUND OF THE METHOD

Let the grating (see Fig. 1) be excited by a packet of plane E- or
H-polarized waves

U' (y,2,6) = Y apei(En¥~Tn2) 220 (1)
neN®

where N7 is a finite set of integer numbers {n}>_. The determination

of the total diffraction field U (g, k) can be reduced to the following
boundary value problem within the strip (a Floquet channel) F' =
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{g: 0<y<2r}. We are seeking the solution U/ (g,k) of the
homogeneous Helmholtz equation

& 8 f
ay2+a +K’E(y!z) U (gr ) 0
g={y,2} € Q=F\intS, k>0 (2)

The solution has to satisfy the radiation condition

Uf (g,6) = Ut (g,K) + 00 z bpet (BnvtTnz) 5 >0 (3)

n=—00

and the generalized boundary conditions

Etglyes = / (|Uf [* + |gradv! |2) 3y <ien 4)
B

uf {8;); }(21T,z,n) = ¢i2m® Uf{a;; }(U 2, K) (5)

Here U(+) = E, for the E-polarization (E, = E, = H, =0) and

U) = H, for the H-polarization (Ey =E, =H; =0); E.yand H(..,,
are the components of the vectors of the electric and magnetic field,
respectively; €(g) is a complex-valued piecewise smooth function (a.
piecewise constant function for the H-case) characterizing the relative
dielectric permittivity of the grating material; S is the piecewise-
smooth boundary of the metal components of the grating; intS is the
cross section of these components; B is an arbitrary compact in Q, ®
is the real parameter of the Floquet channel F; &, = n + ®; & is the
dimensionless frequency parameter characterizing the relation between
the grating period and the excitation wavelength. T, = (k% — @ﬁ)lﬂ,
ImI', > 0, Rel', > 0. The smoothness of the function U/ (g, &) is
guaranteed by the required continuity, all over @, of the tangential
components of the field vectors. The time dependence t is assumed to
be exp (—ikt). The radiation condition (3) satisfies the requirement of
the absence of the partial components (plane homogeneous and non-
homogeneous waves) arriving from z = oo (the propagation direction is
uniquely defined by choosing the root branch and the time dependence
of the process), in the scattered field

U®(g,k) = Zbe ®rnytlnz) 23>0 (6)

n=—0o
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The second part of condition (4) limits the field energy in any bounded
area and completes the first one near the singular points of the
structure geometry.

Let us consider equation (3) in detail, representing the total
complete diffraction field in the reflection zone of the structure. The
first term is a packet of waves exciting the grating (see (1)). An infinite
series determines the scattered (secondary) field (6). The terms of
this series are called partial components of the spatial spectrum or
diffraction harmonics. Every term of this expansion, when ImI',, = 0
and ImI',, > 0, is a homogeneous plane wave outgoing from the grating
at an angle

@S = —arcsin [(n + @) /&] (7)

The plane homogeneous wave packet Ut (g, ) arrives at the angles
of ¢!, = —$ (all the angles are counted in the plane yOz from the
axis z anti-clockwise, see Fig. 1). If we represent the amplitudes
b = {bn}, in terms of a generalized scattering matrix of the structure
R = {Rup}, p» (bn = g:v_Rnpap or b = Ra, a = {an},cn: ) the

p i
balance of the scattering harmonic energies (that is analogous to the
energy conservation law in the case considered) can be easily derived
from the relation [1, 8]

e o]

S" |Rnpl* Rely = Rel, + 2ImRypImI, — W (8)

n=—00

where the value W > 0 is determined by the losses in a non-ideal
dielectric (W = 0 by Ime (¢) = 0). In the case of a lossless dielectric,
if the grating is excited by a single homogeneous plane wave with an
amplitude ayp, the relative energy fraction converted to each scattered
field harmonic U* (g, k) is determined from the value

Wiy = |bn|? Rel'y / la,|? Rel,

Thus we have complete conversion of waves one into another provided
that W,, = 1. Similar conditions of complete conversion can be
obtained from equation (8) for any other packet of “incoming” and
“outgoing” waves.

The problem described by (2)—(5) can be uniquely solved for each
k > 0 excluding (at Ime (g) = 0) only a countable set without finite
accumulating points [1]. The periodic and waveguide open resonators
substantially differ from the compact ones by the presence of such
a special point in the physical domain of the frequency parameter
variation, which predetermines some uncommon scattering regimes of
sinusoidal and non-sinusoidal waves [4].
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These special points {%} are a group of elements of the spectral set
(2 (eigen-frequency spectrum), whose complete compound is defined by
the characteristic features of the analytic continuation of the solution of
the problem described by (2)—(5) from the real axis x into the domain
of the complex values of «. If continued within the natural boundaries,
the analysis domain is extended to the infinite-sheet Riemann surface
K consisting of the planes (sheets) & cut along the lines [1]

(Rek)? — (Imk)2 — 32 =0, n=0,£l,.., Imk<0 (9)

The branch points k., are of second order and are defined by the
condition 'y, (k) = 0, m = 0, £1, .... The first sheet of the surface
K (T, (k) value distribution), whose real axis is the field of analysis of
the diffraction problems (2)—(5), is entirely defined by the conditions

Iml, >0,Rel’,-xk>0; n=0,%1,.., Imk=0

which follow from the radiation condition (3) and the cuts (9). The
higher-order sheets differ from the first one in as much as signs of I', ()
are reversed for a finite number of the n-subscript values.

The function U/ (g, k), is meromorphic in K (see [1]) as a function
of the complex variable . Its poles {%, } form a set, which is discrete in
any finite part of K. In the points &, € {2, the homogeneous problem

L 92
52 a2

+n26(g)]U(g,n)=0, geEQR, KeK (10)

U(gr)= Y cad®¥¥d), 220, sek (1)

n=—00

Eiglyes =0 (12)

U{%%}(Z'fr,z,ﬁ,)=e‘2“q’U{Z—Z}(U,z,ﬁ), keK  (13)
(see also (2)—(5) can be solved in a non-trivial way. Its solutions
U (g,Fm), Fm € §2 are called the natural field oscillations in the open
periodical resonator (in the grating), and the corresponding complex
numbers K., are the eigen-frequencies.

Assume here that, at certain values of the independent variables,
one of the complex eigen-frequencies & crosses the real axis within the
strip Rex > 0 of one of the higher (non-physical) sheets of the surface
K. Let us analyze the partial components of the natural oscillation
field (11) in the reflection zone of the structure. A part of them have
numbers n such that & < |®,| are non-homogeneous plane waves which



618 Sirenko, Yashina, and Schiienemann

decrease (if ImI', (k) > 0) or increase exponentially (if Im[, (k) < 0)
with increasing z. The set of partial field components (11) in addition
to the first set having numbers n such that & > |®,|, merges with
the homogeneous plane waves arriving at the grating (in the case of
Rel', (k) < 0) or going out of it (in the case of Rel', (k) > 0).

Then we form two packets, U (g,%) and Us (g, %), from all the
partial components of the natural oscillation field with eigen-frequency
£ and Imk = 0 which do not intersect on the set {n}>_:

Ui (gR) = 3 cue/Petting (14)
nEN_,-

Here, N1 + Ny = {n}>_, ie.

Ui (9,&) + Uz (g,k) = U (g,R)

Ny ={n:ImI', (K) <0 or Rel, (k) <0}
Ny ={n:ImI', (k) >0 or Rel, (k) >0 }

We can represent the fact of the occurrence of the natural field
oscillations in the grating at a real eigen-frequency & of one of the
higher sheets of the surface K in terms of the general diffraction
problem (2)—(5). As follows from the representation (14) for U; (g, &),
while exciting the grating by a plane wave packet U; (g, k) at frequency
k, which coincides with the projection of the point & onto the first sheet
of the surface K, the secondary field is only determined by the plane
wave packet Us (g, k), and the natural oscillation field U (g, k) overlaps
with the full diffraction field

U’ (g,k) = U (g, k) = Uy (g, k) + Us (g, &)

Thus the eigen-frequency % determines the excitation frequency s
where one plane wave packet is completely converted into another
one by the grating; the packets overlap in none of their components
(i.e. they contain different harmonics of their spatial spectrum). This
means that the solution of the problem of complete conversion can be
reduced to searching for the real eigen-frequencies % lying on the higher
' sheets of the Riemann surface K. The latter problem is solved by
employing numerical algorithms. Examples of several of the algorithms
are given in papers [1, 2] and [13]. The characteristics of the packets
U; entirely determine the Riemann surface sheet and a part of the
real axis between two nearest branching points which is the domain
of the search. The sheet is defined by the signs of the real and
imaginary parts of the propagation constants I';(k) in the algorithm
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of solving the spectral problem (10)—(13), and the part of the real
axis is determined by the number k such that min {/Rel', (x)/} of
the components of both packets U; is reached at n = k(x > |®g]).
Remember one restriction which is caused by the specificity of the
spectral problems (see [1]): the number of waves forming the set U;
must be finite.

According to theorem 1.10 from [1], there is one more sheet of the
surface K on which the projection of the point & from the sheet under
consideration is a spectral point as well ( For convenience, the theorems
and lemma mentioned in the text are given in an Appendix ). Here, the
real parts of the propagation constants I';, of the homogeneous plane
waves, which are the partial components of the natural oscillation field
(11), reverse their signs. This means that the point & of the frequency
band, which is a projection of the eigen-frequency K onto the first
sheet of K, is the point at which there is a complete conversion of
the wave packet V] (g, k) into the wave packet V; (g, k), which contains
all the homogeneous waves of the packet Vj (g,k) Us (g,&) (only the
harmonic numbers, not the amplitudes) and all the non-homogeneous
waves from Uj (g, k), and V3 (g, k) contains all the homogeneous waves
from Uj (g, k) and the non-homogeneous ones from Us (g, k). Lemma
1.5 from [1] ( see Appendix ) and the reciprocity relation [7] enable us
to correlate the above case with some other situations by substituting
the constant ® with (—®) under the quasi-periodicity conditions of the
excitation problem (the change to the structure “rotated” around the
z-axis).

The problems of complete conversion of the wave packets
containing several propagating harmonics can hardly be efficiently
solved by the diffraction theory methods (i.e. as direct problems). In
view of this, the advantages of the spectral approach are irrefutable.
This approach is applicable under any conditions and provides
complete information on the scattering process: on the total diffraction
field (natural oscillation field); on the packet component amplitude
U; (9,k) (the amplitudes of the partial components of the natural
oscillation field in the radiation zones); on the operation frequency (the
eigen-frequency & ), and on the structural parameters of the scattering
regime.

3. NUMERICAL RESULTS

The first example is the problem of natural oscillations of an E-
polarized field in a reflection grating with rectangular lamellas and
dielectric slot filling (see Fig. 2b: 0 = 0.8, ¢ = 3.89, ® = 0.1; 27
is the profiling depth of the structure, 2w6-width of slots). Fig. 2a
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Figure 2. Results of applying the spectral (a) and the classical (b)
approach to searching for the regime of complete wave conversion (E-
polarization, § = 0.8, ¢ = 3.89, ® = 0.1) for the diffraction problems

(2)-(5)-

represents one of the spectral curves & (6), the arrows on curve & (9)
show the direction of § increasing. A part of the curve & (¢), indicated
by the solid line, shows the variation of the eigen-frequency value in
the first, physical, sheet of the surface K. The most important points
here are those of & (§) that are lying on the real axis; the Q-factor of
the natural oscillation increases without any limit (this is the Hog1-
type oscillation: the resonance at the Hp-wave in the slot with one
complete field variation along the structure depth). The branch cut
starting in the threshold point of the first harmonic (k = k_1) separates
the physical and the non-physical sheets of the surface K. The cut is
shown in Fig. 2a by a wavy line.

With & decreasing, the element & of the spectral set {2 moves to the
second sheet (dashed continuation of the curve) and crosses its real axis
in the point & = 0.9024 with § = 0.245. Over this part of the real axis,
Rel, > 0, Rel'; < 0, ImI", = ImI'_; = 0, and for the rest n # 0, —1
holds Rel', = 0 andImI', > 0. According to the conclusions made
in part II, the grating with parameters § = 0.245, § = 0.8, ¢ = 3.89,
the Floquet channel parameter ® = 0.1 , and the frequency parameter
k = 0.9024 must completely convert the first incident harmonic into
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Figure 3. Spectral analysis of the effects of the complete wave
packet conversion (E-polarization, a grating with dielectric-filled slots,
=408, ¢ =380, &= 0.33).

a zero outgoing one and vice versa. In this case, ' ; = —85.8° and
@S = —6.4° or ¢! = —6.4° and ¢*, = 85.8°.

Fig. 2b is, in fact, a confirmation of the predicted effect. The
figure shows, in the coordinates k, d, the lines of equal level of the
relative part of the energy W_; o (k,0) = const converted to the first
propagating harmonic of the field U® (g, ), if the structure considered
is excited by the principal (zero) wave of the spatial spectrum. As
expected, the area of the almost complete conversion with W_;o >
0.999 covers the point {x = 0.9024, § = 0.245}, which has been found
by the spectral method.

‘We have considered above the result of using the spectral method
for analyzing the conversion properties of gratings in one of the
simplest situations when each of the packets U; (g,k) contains only
one homogeneous plane wave. In the cases listed in Figs. 3 and 4
and in the table, the packet U; contains only homogeneous waves
(one to three), and the packet Uz contains an infinite spectrum of
non-homogeneous waves and one to three homogeneous waves. The
line diagrams demonstrate the spectral lines Rek (6) and Img (d) lying
on the respective sheets of the Riemann surface K. The sheet is
defined by the sign distribution at Re& (d) in the situation described
as “direct” in the table. An inverse situation is associated with the
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Figure 4. The same as in Fig. 3, but for different wave packets U
and UQ.

conversion of the homogeneous waves from one packet into another.
The points where Img (§) = 0 are marked with appropriate numbers.
Fig. 3 demonstrates a fragment of the distribution of the eigen field
|U (g,%)| = const (or, which is the same, but expressed in terms of the
general diffraction problem (2)—(5), the lines of the equal level of the
total diffraction field |U/ (g, k) = Ef (g, &) |) on a single period of the
grating taken in point 3 of the spectral curve. Complete information
on the regime of the wave packet conversion in the point where Imx (4)
vanishes is given in the Table. Here the values x, d are presented with
their first three decimals only.

The spectral method allows us to synthesize the gratings
supporting additional interesting scattering regimes. One of them is
described below. .

The packet U; (g,x) = U’ (g,k) consisting of non-homogeneous
waves is converted at frequency x into the packet Us (g, k) = U*® (g, k)
consisting of non-homogeneous waves, too, provided there is an eigen-
frequency K (the projection of & to the first sheet coincides with k)
lying on the Riemann surface sheet which is determined by reversing
the signs of I'y,, n € Nj of the first sheet. It should be noted that
if free space radiation of the propagating harmonics is possible at
this x, then, according to theorem 1.3 from [1] (see Appendix A)
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Table
Figure | Oscillation | Point Situation | Amplitudes of Amplitudes of Parameters of
mode where the incident the outgoing the complete
Img(8)=0 homogeneous homogeneous conversion
waves waves regimes
K [}
3 Hoza 1 Direct a1 =1,5+142,8 by =2 1,551 1,476
b_y =-0,51 —il,1
Inverse ag =2 by =3,1+1i0,61
a-y = 0,88 410,82
2 Direct ay = 3,08 + 10, 56 bo=2 1,551 1,477
b1 =1,1-10,2
Inverse ap =2 by = 1,48 +42,75
a-1 = 0,53 — 10,99
3 Direct | aj = —2,81 43,6 | by =2 1,551 1,491
by =0,1-42,74
»
Inverse ap =2 b =2,6-13,8
a_y = 2,64 +i0,75
4, Hi i1 1 Direct | ao=2 boy=1,4+4140,35 | 2,658 1,819
a =2,9+il,7 b_g=0,77+43,3
by =-1,7-41,7
a_y =0,09-141,4 bp=2
a_g3=-2,6+i2,2 | by =2,5+42,2
az = 0,33 —i2,4
2 Direct ag =2 by =2,3 +i0,58 2,658 1,825
a; =-0,24 +42,1 | b_g = —0,56 —il,3
by = 0,79 —i0,73
Inverse a-1 =0,16 —42,4 bp=2
a_a=1,2-1i0,74 | b =1,9-1i0,86
az=1,1-1i0,13
4,b Ho110 1 Direct ag =2 by =1,4-43,3 2,479 2,137
ay=—3,9-1i0,86 | b_p=0,05+1i2,5
by = —0,55 + 0, 56
Inverse a-1=3,6-40,33 | bp=2
a_2=-1,5+i1,0 | b = -2-i3,4
az = 0,78 +140, 14
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the amplitudes of these harmonics in the natural oscillation field:
U (g,k) = Ui (g9,k) + Uz (g,&), and hence also in the total diffraction
field: U (g,k) = Uy (9,K) + Uz (g, k) must become zero.

The significance of investigating this situation in many applied
problems becomes more evident, if one takes into account that
the surface eigen waves of the planar dielectric waveguides (the E-
polarization) or the eigen field of the density-modulated electron
beam (the H-polarization) can be used as components of the packet

Ui (g,K).

4. MAIN RESULTS AND CONCLUSIONS

The spectral theory of open periodical and waveguide resonators
studies the characteristic features of the analytic continuation of the
resolvents of the stationary boundary value problems of type (2)-
(5) into the area of the complex (non-physical) values of one of the
parameters (the spectral parameter). The theory suggests a common
methodology for solving many actual mathematical, physical, and
applied problems of the theory of electromagnetic wave resonance
scattering. In this paper, the methods and results of the spectral theory
(the methods of solving direct problems) are used by solving rather
specific inverse problems of scattering theory. Periodical structures
of specified configurations were synthesized, which implement the
qualitatively specified scattering regimes. For demonstration reflection
gratings were chosen, but there is no principal difference in the
approach if one considers semi-transparent, selectively reflecting, and
transmitting gratings.

The analysis of waveguide resonators as semi-transparent
structures is even more interesting with regard to applications, than
an analysis of periodic structures (gratings). A free selection of the
quantity, configuration, and the spatial orientation of the channels
feeding and carrying out the electromagnetic field energy, offers to
the experimenters unlimited possibilities of choosing the regimes,
and presents the theoreticians with a lot of non-standard problems
including the ones of complete mode packets conversion.

The general statement of the spectral boundary value problems
and the main conclusions from the analysis of their solutions on
different sheets of the Riemann surface for waveguide open resonators
are essentially the same as the above. The specificity (e.g., the
alternation of the branching points and their location) is caused by
the obvious changes in the radiation conditions of type (11), which
are to be formulated for each individual semi-infinite channel open for
energy transmission [3]. Solution of the problem for waveguides can be
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Figure 5. Complete wave conversion in waveguide open resonators.

illustrated by two simple examples of a full conversion of wave modes
at the circular waveguide widening (Fig. 5a) and the coaxial-waveguide
turn of a circular waveguide, with an infinitely thin inner wall (Fig. 5b;
g is the ratio of the radii of the narrow and the wide waveguide; 9 is the
resonator length normalized to the wide waveguide radii b; k = b/)).
For the widening of a circular waveguide with § = 0.8, one of
the eigen modes with field distribution E, (r,z) (r and ¢ are the
polar coordinates in the cross section), which is antisymmetric along
the longitudinal axis z, has a real eigen-frequency £ = 1.119 at
§ = 0.798. According to the radiation conditions for this eigen mode,
the Hog-waves of the semi-infinite waveguides are the incoming ones,
and the Hp;-waves are the outgoing ones. Fig. 5a shows the lines
of equal value of the power coefficient conversion of the opposite-
phase Ho; (Hgg) waves arriving from the two channels of the circular
waveguide widening into the reflected Hog (Ho1) waves: Waj (k,0) =
Wiz (k,6) = const. At the point with coordinates k = &, § = ¢ (its



626 Sirenko, Yashina, and Schiienemann

location is marked with an asterisk), Wy, = Wiy = 1.0, which is in full
agreement with the results of spectral problem analysis.

Fig. 5b demonstrates the distribution of the lines Ey (r,2) =
const of the total diffraction field in a coaxial-waveguide turn whose
parameters § = 0.65, 6 = 0.297, x = 0.938 provide a complete
conversion of the Hpj;-wave of a narrow circular waveguide into the
Hp,-wave of the coaxial waveguide. This set of parameters has been
found from the solution of the corresponding spectral problem with
radiation conditions that the Hy;-wave of the coaxial waveguide is the
incoming one, and the other waves in both channels of the coaxial-
waveguide turn are outgoing ones.

APPENDIX A.

A.1. Theorem 1.3

If Ime (g) = 0, then for volumetric gratings (6 # 0) we have following
statements:
e for Imk # 0 and Rek # 0 there are no such eigen modes of field
for which the relation ReRIm& 3 (|a,,,|2 + |bn|2) Rel,, > 0 is valid;
e for Imk = 0 and ReR # 0 there are no such eigen modes of field
for which the relation 3 (|an]2 E2 |bn|2)ReI‘n £ 0 is valid;
e for Imk # 0 and Rek = 0 there are no such eigen modes of field
for which the relation ImI", > 0 for all n = 0,£1,+2, ... is valid;
e for |Im&| > |Rek| there are no such eigen modes of field for which
the relation Y (]an|2 + |bn|2)ImI‘n > 0 is valid.

A.2. Theorem 1.10

Suppose that the point & € €2, with Imk < 0 (damped in time eigen
mode of the field) does exist. Then the sheet of multi-folded surface
K with point (—&) such that —& € € in it can be found (increasing
with time eigen field). €, is a set of eigen values.

A.3. Lemma 1.5

If Ime (g) = 0! then G(gm 90:’51‘1’) = G(gg,g,n,—(b) =
G* (g, 90, —k*, —®). Here G (g, go, k, ®) is the Green’s function of the
grating.
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