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ABSTRACT

R.J.Wombell and J.A De Santo have presented in their paper (Wombell
and De Santo, 1991) the computational scheme which implementation
made possible sufficiently good reconstruction of one-dimensional rough-
surface profile with small roughness when a single frequency and a single
viewing angle are used. The basic idea of the method (quasilinearization
of integral relations of potential theory) turns out to be reasonably
universal with respect to numerically solvable inverse boundary value
problems and can give rise a large body of simple algorithms being
efficient both in long wavelength and resonance frequency regions.
Certain of these potentialities are analyzed in our paper. Reflecting
grating with an arbitrary profile (a classical object in wave scattering
theory) has been chosen as a model structure.

1. DIRECT PROBLEM OF THE DIFFRACTION GRATING

Consider a grating (see Fig.1, the structure is uniform in x -direction)
placed in the field of a plane FE-polarized electromagnetic wave

U'(y,z2)=E, =expli(®yy—-Ty2)], E,=E,=H,=0. The direct
diffraction problem is reduced to determination in the region
Q={{y,z}:—o<y<x; f(y) <z <0} of  twice continuously
differentiable function U(y,z)=E, =U' +U’ (the total field) which is
the solution of the homogeneous Helmholtz equation

i+i+k2 U(y,2)=0, {y,23€Q (1)
@/2 a22 » 2 y7 2
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with boundary conditions
oUu 2 ou

{U,—}(y +2m,2) = /2™ {U,—}(y,z); Uy, f(y)=0 2)
oy oy

and radiation conditions

U,2)=U'(y,2)+ X a,e ™ z>0 3)

n=—o0

E . ,and H_, are the components of electric and magnetic field strength

vectors, I, =+k?—®2, ImRel’, 20, ® =n+®,, n=0=+1...;
n n n 0

®, =ksina; k=2m/A is a frequency parameter, A and o are
wavelength and angle of incidence of a plane wave, f(y) is 2m-periodic

real function. The problem is considered in the dimensionless space-time
coordinates, in which the period of the structure is 2n and the time
dependence is defined by the factor exp(—ik?) .
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FIGURE 1. Perfectly conducting grating.

The problem (1)-(3) is uniquely resolvable for all real £ except a
countable set of £ that may has accumulation points only at infinity
(Shestopalov and Sirenko, 1989). It is known (Shestopalov and Sirenko,
1989, Colton and Kress, 1983) that its solution everywhere in R\S§
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(R={{y,z}:0<y<2m}, S={{y.z}:z=/(»),0<y<2n} is a
scatterer’s boundary) can be represented as a single layer potential

U* (9,2) == [(0,20) G, 2, ¥0.20)dS;  {y,2} €R\S, 4)
S

if only the continuous density n(y,,z,) is the solution of the following
singular integral equation:

[M00,20)G(0,2,,20)dS =U' (y,2),  {y.z} €S, (5)
S

where G(y,z;y,,2,) = —i(4'rc)_1 ir,,‘l exp[i(d)n(y —Yo)+ F,,|z —Z4 |) is

a quasiperiodic Green's function of a uniform Floquet channel. From the
physically evident condition U(y,z) =0 for all z < f(y) we can obtain

one more expression for scattered field which is akin to (3):

o0

Us(y,2)=—-2.80e" ™™ z< f(p). (6)

n=—co

2. INVERSE PROBLEM OF THE DIFFRACTION GRATING

The inverse problem (the grating profile reconstruction problem) is to
determine the boundary § from the total field U(y, z), which is given for
z>0 by its complex amplitudes {a,}. Let o and & are fixed. It is also
assumed the function f(y) is single-valued. However, this requirement is

not essential in constructing the algorithms and can be removed through a
proper parametrization of the contour S .

Substituting the expression for G into (4) and using (3) and (6), we
obtain the following relations:

b, =2nl,(a,+8°)~

of it SO ] i, (7)
~£u(yo)[l"nf(yo)+---+(—1) (ZN—O—I)' e "dy,,
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¢, =-2ml, (a,-8)~

U L’ /(%)  wa LS OIFY™ | i
~£u(yo){1—T+...+( 1) TR )

5, V2
(o) =m0, f (yo)){l{ayif (yo)J ] exp(—i®yy,), n=0x1,...
0

The smoothness of these functions is determined by the number of terms
taken into account in the expansion of exp(+il, f(y,)) in powers of

arguments. In this case 2N terms are considered.
By introducing new variables a,,

2n
a™ = Iu(yo)fm(yo)e”"y°, m=01...2N-1, n=0z%1,... ®)
0

we come to the following quasilinear problem which is equivalent to (7):

a™M=@"Vx f), m=12,...2N -1,
b~ D(l)a(l)—D(3)a(3)+... n (_1)N+1D(2N—l)a(2N—1), (9)

crad®_DPg®, | (_1)N—1D(2N-—2)a(2N—2)’

where a™ ={(a™},, b=1{b,},, c={c,}n, f={fy}n [, are the

Fourier coefficients of f(y), D™ ={8? ()" /m!},,yp. The asterisk

signifies the convolution operation in the space of infinite sequences, i.e.

(axb)= {Z a, ,b,}= {Z b, ,a,}. The complete system (9) consisting
p p

of 2N +1 equations for unknown vectors f, a®@, a,....a®™7 is

suggested as a base for constructing the numerical inverse algorithms
under consideration.

At N =1 (this approximation has been used by R.J.Wombell and
J.A De Santo in their paper (Wombell and De Santo, 1991)) the system (9)
is solvable with respect to f(y) in the explicit form:
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f»=F) =Re{i2(an +52)ei"y/zl"n(an —52)6"”} (10)

The numerical implementation of (10) allows one to estimate beforehand
the real potentialities of the algorithms resulting from (9).

3. REFINEMENT OF THE ALGORITHM AND NUMERICAL
EXAMPLES

The input data for computational experiments (complex amplitudes a,,)

in Fig.2-7 have been obtained from numerical solution of the associated
direct problems by the method of analytical regularization of singular
integral equations (5) (Shestopalov and Sirenko, 1989, Krutin’ et al,
1992). This method ensures the required accuracy of the input values in
the considered range of parameters k,a and &. So, one can be sure that

the input data correspond to a real scatterer. By this means the question
about existence of the inverse problem solution which is not unique in the
general case is removed.

The relative grating depth (parameter £0) and period (parameter k)
have a pronounced effect on the accuracy of the inverse problem solution
in the approximation being used. The relative error in the determination of
f(y) in a uniform metric (by maximal deviation) on the period

(0O<y<2m)for k<2, a<80°, and & up to about 0.15 does not exceed
6% for actually any profiles (see Fig.2a, Fig.3b).

The growth of the error through increase of £ goes on more rapidly
than its reduction when decreasing the value & . This is observed also in
the cases when k& does not increase (see Fig.2b, Fig.3). The decrease of
the grating depth in an integral metric, even with its increase in a uniform
one, allows one to move the limit of acceptable accuracy of the
reconstruction towards the greater values of 6 and k. The curves in
Fig.4b and Fig.3b, where the integral norm of the proper profile f(y) is
sufficiently large, confirm this conclusion: the reconstruction error both in
a uniform and in an integral metric is distinctly higher than in the case
from the Fig.4a, in spite of considerable decrease in & .

The case when N =1 and & is large (or in more general situation: at
high integral norm of the reconstructed function f(y)) can be used
efficiently in the framework of the following iteration procedure. The

function j (») given by (10) acts as starting approximation allowing one
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FIGURE 2. Results of solving the inverse problem for echelettes of various
depth with o =0° and £ =1.2. 1:true profile f. 2: f.
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FIGURE 3. Results of one-step procedure of the profile reconstruction with
o =0°and various k. 1:true profile. 2: computed profile with £ =0.8 (a),
k=14 (b). 3: k=105 (), k=24 (). 4 k=12 (a); k=32 (b). 5:

k=38.
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FIGURE 4. The effect of £ and a on the reconstruction of gratings with
different depthand k=12. (a) 1: true profile f. 2: j with 0 =0°. 3:
f with o = 80°. (b) =0°. 1. f. 2. f.
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-1.0

FIGURE 5. The use of f as starting approximation in the iterative process
for reconstructing f with «=0°. 1. f. 2: j 3 fl[f]. 4. fAZ[fl].
(@) k=14. (b) £=1.05.

FIGURE 6. The regularization of the iterative scheme withao=0°and k=14 .
(a) direct scheme. 1. f. 2: j 3: fl[f]. 4 J}Z[fl]. (b) modified
scheme. 1: £. 20 f. 3 FfIf]. 4 fIf]. 5 f2A11.
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FIGURE 7. Results of the iteration procedure with N =2 and a.=0°. 1:
f.o2f. 3 FIIfl. 4 f2Af1]. (@ k=32. (b) k=338.
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to make more precise the values of vectors a® and aV in the first
equation of the system (9), which will be inverted then following the same

scheme. When constructing f () the error in the determination of true

values of a'” has been given by the value of rejected remainder of a
power series:

2z
dy = [n(yo)leos(T, £ (ye)) —1le™™ dy,.

In the next step it is suggested the replacement (not the rejection) of this
remainder by the analogous one appropriate to the found function f(y).

As a result the error in the determination of a'® with rather "good"
starting approximation f(y) will be reduced to

‘;'r(xo) = I{[P()’o) — (Y, )][COS(an(yO ) - 1]_,_
+0(yy) JeosT, f () —cos(T, f (v ))]}e—inyO &,

where [1(y) is the potential relevant to the profile f (») . The properties of

resolving operators of direct problems (Shestopalov and Sirenko, 1989,
Krutin® et al., 1992) let us to assert that in this case the computational
procedures realizing such scheme will be convergent. Our calculations
confirm drawn conclusion: even in the second step when determining

f 1(y) through af,o) and a,(}) corrected with the help of f (¥) (we note this

relation as f I[ f ], similarly f 2[ f 1], etc.), we obtain the satisfactory
accuracy of the reconstruction of f(y) for the gratings where maximum

depth is twice larger (see Fig.5), the error does not exceed 6% in a
uniform metric.

For greater & and (or) £ the starting approximation f (y) does not
always allow to "enter" into a convergent iteration procedure (see Fig.6).
In such a situation it is essential to use not the functions f,f1[f],... by

themselves but their adjusted analogs f,f1[ f ],-.. to obtain successive
approximations. There exist some reasonable methods of such adjustment
(one simple version is presented in Fig.4b). We shall consider the
following method in greater detail. The method takes account of the
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peculiar features of the basic algorithm. It also considerthe behaviour of
f(») and its successive approximations which have been revealed in the

course of numerical experiments.
It must be emphasized that the first artificial adjustment of the starting

approximation f (y) has been performed yet in the framework of the

representation (10): the imaginary part of the solution has been discarded
because it causes the error accumulation and the iteration procedure will
be unstable. It is a reasonable step in the search for a real function. The

construction of f(y) and the subsequent procedure is based on the same

principle: the elimination beforehand of those factors which lead to
accumulation of the error. The following facts provide the background for
this action. Firstly, the sections of graphs of any reconstructed profile the
maximum depth of which is under some fixed value are coincident with
the graph of a real profile. This fixed value correlates for each iteration

with a certain range of k. Such, for example, for f (y) at k <2 the depth
is given by the inequality z>-0.5. Secondly, the greatest deviations of
f(y) from a real profile f(y) in the region where | f (y)| is of maximum

value are conditioned by the errors in the determination of amplitudes J},,

of the function f (») higher Fourier components.

Let us consider one example (Fig.6) suggesting the correct solution of
the problem. The direct iteration procedure on the third step ( f 2[ f 1]) is
starting to get away from the desired solution in the interval 4 <y <35.5

(Fig.6a). As this take place f, =0 for |n| >2; ( f ] f“ 1), reach the value

about 0.5-107%2. The amplitudes of basic components (7 =0,+1,42) are
changed moderately with each iteration. Having interrupted the process
after receiving f I J} ] and having constructed f1[ j} ] we obtain on the
next iteration practically precise coincidence with a desired function f(y)

(Fig.6b). In real instead of model conditions the determination of basic
Fourier components is not a complicated computational problem, because
Fourier amplitudes remain relatively stable under step by step procedure.

For adjusting values of the vectors a'® and a" the following scheme
can be used . The subsystem of 2N linear operator equations from the
system (9) (all equations with the exception of the first one) is inverted.
The matrix operators of  the convolution equations
a™ =@"V+f), m=2..2N-1 are given by the Fourier

coefficients of the obtained function f (»). The next approximation
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F1Lf] is determined by the formula a® = (a® * f1), where vector f1

consists of the Fourier coefficients of function j‘ 1[ f‘ ]. The process is
repeated many times until the required accuracy of the reconstruction is
achieved. The accuracy can be checked against the error in the
reconstruction of the input data {a,}. In any step of the process the next

approximation can be adjusted by artificial means, specifically by using
the method outlined above. For large & the suggested scheme turns out to
be not as efficient as the previous one. However, it gives the desired result
more rapidly if the integral norm of f(y) and k are large and & is not

too large (see Fig.7). Thus, apparently that both of these schemes can be
used in the framework of one algorithm: one can turn from one scheme to
another taking into account the results of earlier steps.

We can not indicate right now the boundary values of & and & at which

the starting approximation f (y) for N =1 become invalid: we have got

satisfactory results even when period length is five times larger than A
and grating depth was 2A . However it is clear that the range of 6 and &

where the starting approximation f (y) matches our requireménts is
bounded. So we have to seek for alternative procedures for constructing
S () for increasing k£ and & . One of supposed procedures is associated

with direct inversion of the quasilinear system (9) for N >1. The idea of
quasilinearization is rather fruitful and may serve as a basis for several
computational schemes. Such schemes undoubtedly deserve certain
attention because they do not utilize any additional input data even in such
important issue as starting approximation, they rely only on basic
numerical techniques that are flexible and easily adjustable for required
parameter range. Their capabilities allows one to solve a number of
important applied problems in optics (holographic grating diagnostics),
solid state electronics and diffraction electronics (synthesis of dispersion
open resonators with selective mirrors), and radiolocation (synthesis of
effectively reflecting and absorbing coatings) (Shestopalov and Sirenko,
1989), where small depth of the structure is the frequently occurring
process requirement. Besides, the gratings in relevant devices usually has
to bring into existence not a large number of spreading harmonics.

In conclusion we should like to point out one rather important
particularity of algorithms described. The choice of starting approximation

f (¥) as it has been made for N =1 regularizes in essence the ill-posed

profile reconstruction problem. It is known that the uniqueness of the
solution in the mode of one frequency and one position probing can not be
ensured. However, the precise starting “getting into” on the sections of y
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where |f (y] is not too large “cuts off” immediately all alternative

possibilities. So if the iterative process converges then it does converge to
the true profile f(y).

REFERENCES

Colton D. and Kress R. 1983 Integral Equation Methods in Scattering
Theory (New York: J. Wiley & Sons)

Krutin’ Y I, Tuchkin Y.A., and Shestopalov V.P. 1992 The Diffraction of
E-polarized Electromagnetic Wave by Periodic Smooth Waved Surface
1992 Radiofizika i Electronika 37(2) 202-10 (in Russian) (English transl.
in Journal of Communications Technology and Electronics)

Shestopalov V.P. and Sirenko Y K. 1989 Dynamic Theory of Gratings
(Kiev: Naukova Dumka) (in Russian)

Velichko L.G. and Sirenko Y K. 1996 Two-dimentional Inverse Boundary
Value Problems in Diffraction Theory Zarub. Radioelektronika. Uspehi
Sovrem. Radioelektroniki 2 2-19 (in Russian)

Wombell R.J. and De Santo J.A. 1991 The Reconstruction of Shallow
Rough-Surface Profiles from Scattered Field Data Inverse Problems 7 L1-
12



