Лаборатория микро- и нанооптики (№ 13/1)

image002
Руководитель: Александр Иосифович Носич
г.н.с., и.о. зав. лаборатории микро- и нанооптики
доктор физ.-мат. наук, профессор
IEEE Fellow, OSA Senior Member
Тел. +380-57-720-3782
E-mail: anosich@yahoo.com

 Портфолио


Тематика научных исследований

Лаборатория ведет исследования в следующих направлениях:

  • Разработка методов вычислительной электродинамики, имеющих гарантированную сходимость, для оптического диапазона волн
  • Резонансные явления в рассеянии и поглощении оптических волн на телах из металлов и диэлектриков, в том числе плазмонные резонансы и решеточные резонансы для ансамблей из большого числа субволновых рассеивателей
  • Свойства мод микро- и нанорезонаторных лазеров
  • Рассеяния и поглощение волн терагерцевого диапазона на лентах и дисках из графена
  • Оптические микро и наносенсоры изменения показателя преломления среды
  • Анализ и оптимизация квазиоптических линзовых, рефлекторных и других антенн
  • Нестационарные процессы в открытых резонаторах и волноводах
  • История исследования и применения электромагнитных волн в Украине

История отдела

Основное научное направление лаборатории – это теоретическое исследование резонансных и квазиоптических эффектов в излучении, распространении, рассеянии и поглощении волн диэлектрическими, полупроводниковыми и металлическими структурами, в диапазоне длин волн от видимого света до терагерцевых волн и микроволн. Особенностью исследований является разработка надежных и эффективных методов и оригинальных алгоритмов расчета электромагнитных полей на основе интегральных уравнений, в сочетании с аналитической регуляризацией и методами квадратур, что гарантирует их сходимость. Исследования и разработки выполняются по программам Академии Наук Украины, целевым программам правительства Украины, а также программам международного сотрудничества. Ряд разработок, связанных с моделированием микрорезонаторных лазеров и решеточных резонансов в периодических структурах из большого числа суб-волновых элементов, имеют пионерский характер.

Следует напомнить некоторые обстоятельства, специфические для анализа гармонических электромагнитных полей в оптическом диапазоне, который соответствует длинам волн между 300 нм and 900 нм и, частично, в более широком диапазоне, но не имеют аналогов в диапазоне микроволн. Все они относятся к свойствам материалов, которые, оставаясь немагнитными, характеризуются комплексной диэлектрической проницаемостью:

  1. Понятие идеального проводника должно быть отброшено, поскольку даже такие хорошие проводники, как благородные металлы, имеют ощутимые потери с тангенсом порядка 0.1; в то же время многие диэлектрики можно считать идеальными, поскольку для них тангенс потерь равен 10-4 и меньше.
  2. Как вещественная, так и мнимая часть диэлектрической функции для металлов существенно зависит от длины волны; только некоторые диэлектрики имеют почти постоянную диэлектрическую проницаемость в значительной части оптического диапазона.
  3. Вещественная часть диэлектрической функции для металлов может быть отрицательной за счет вклада плазмы свободных электронов, что иногда выражается термином «отрицательные диэлектрики».
  4. Мнимая часть диэлектрической функции для полупроводников может быть отрицательной при их накачке, что соответствует материальному усилению или «отрицательным потерям».

Перечисленные обстоятельства означают, что обычное и оправданное на микроволнах простейшее граничное условие для идеального проводника (тангенциальное электрическое поле равно нулю) неприменимо к металлическим объектам в оптике. Вместо него следует пользоваться более сложным условием непрерывности тангенциальных компонент поля на границе диэлектриков или же импедансным граничным условием на поверхности хорошего, но не идеального, проводника. Поведение металлов, в оптическом диапазоне, как «отрицательных диэлектриков» или материалов с «индуктивным импедансом» имеет важные последствия в виде появления оптических поверхностных волн - плазмонов-поляритонов - на их границах с обычными диэлектриками. При рассеянии света на наночастицах этот эффект приводит к появлению резонансов (стоячих волн большой амплитуды) на плазмонных модах частиц как открытых резонаторов. Металлические нанонити и наноленты также способны демонстрировать интенсивные плазмонные резонансы при их освещении светом, поляризованным ортогонально оси нити или ленты (Н-поляризация). Подобным же образом ведет себя графен (одноатомный слой графита) в терагерцевом диапазоне.


Год организации лаборатории: 2010, до этого – автономная группа в составе отдела № 12.

Руководитель лаборатории: главный научный сотрудник Александр Иосифович Носич, профессор, д. ф.-м. н. по радиофизике, тел. 720-3782, Email: anosich@yahoo.com

Основным направлением научных исследований ИРЭ НАНУ долгое время являлось решение проблем радиофизики и электроники миллиметровых и субмиллиметровых волн. В связи с стремительным развитием микро и нано технологий, с начала 2000-х годов НАНУ и Правительство Украины определили нанотехнологии и наноматериалы как важнейшие направления научной работы.

Основанием для постановки вопроса об образовании лаборатории микро и нано оптики в ИРЭ НАНУ послужили следующие обстоятельства, сложившиеся в 2010 году:

  • Постановление Президиума о возможности образования лабораторий как структурных единиц в институтах НАНУ
  • Успешное выполнение в 2007-2009 конкурсного проекта «Микро и нано-размерное электродинамическое моделирование оптических полей в резонаторах с активными зонами в виде квантовых слоев, ниток и точек» в рамках Программы фундаментальных исследований НАНУ «Наноструктурные системы, наноматериалы, нанотехнологии», а также международных проектов «Углубленное моделирование одиночных и периодических активных диэлектрических резонаторов для микролазеров» (Университет г. Ноттингем и Королевское общество, Великобритания) и «Электродинамическое моделирование и проектирование диэлектрических резонаторов и линз для новых приложений в фотонике и терагерцах» (Университет Рен-1 и Министерство европейских и иностранных дел, Франция)
  • Принятие, на конкурсе проектов Государственной целевой программы «Нанотехнологии и наноматериалы» на 2010-2014, заявки на проект «Фундаментальное математическое и численное исследование оптических электромагнитных полей одиночных и связанных микрорезонаторных лазеров с наноразмерными активными слоями, нитками и лентами»

Сотрудниками лаборатории в 2010-2015 выполнено более 10 конкурсных проектов по нанотематике, опубликовано 35 статей в ведущих мировых научных журналах, а также защищены 4 кандидатских и 1 докторская диссертации. Исследования и разработки выполняются по программам Национальной академии наук Украины, Министерства науки и образования Украины и международных научных организаций. В 2011 году проект, выполнявшийся в лаборатории, был признан одним из четырех лучших (из общего числа 120) по Государственной целевой программе «Нанотехнологии и наноматериалы».

Состав лаборатории в июне 2015: 7 научных работников (в том числе 2 на 0.5 ст.), из них 1 д. ф.-м. н., 4 к. ф.-м. н. и 2 соискателя (в настоящее время проходят службу в Вооруженных силах Украины).Вэбсайт лаборатории; http://ire.kharkov.ua/LMNO

 image002

Лаборатория отмечает свое образование в походе по осенней Турции, октябрь 2010. Маяк на мысе Айя.

 image004

Мы и Арнольд Зоммерфельд на конференции по оптическим сетям в Мюнхене, Германия, 2010.

image006

 Семинар лаборатории на лыжной горе «Харьковская Швейцария», март 2011.

image008

В походе по весенней Турции, 2011. Восхождение на вулкан Хасан-Даг, 3268 м.

image010

 Н.с. Елена Смотрова и аспирант Денис Натаров на конференции по плазмонике в г. Сан-Себастьян, Испания, 2012.

image012

М.н.с. Оля Шаповал и Конфуций на симпозиуме по антеннам и распространению, Токио, Япония, 2012.

image014

Пурпурный цвет соответствует точным наукам. Президент университета Рен-1 прикрепляет «эпитогу» (ленту из ткани такого же цвета, как тога, с полосками белого меха) к левому плечу почетного доктора – руководителя лаборатории, г. Рен, Франция, 2015.

image016

Медаль, вручаемая почетному доктору университета во Франции.

Основные результаты отдела за все время

  • Методы. Разработаны методы граничных интегральных уравнений, в сочетании с аналитической регуляризацией или методом Найстрема, для анализа произвольных двумерных диэлектрических тел и тонких лент, трехмерных тонких дисков и идеально проводящих произвольных экранов вращения, в частотной области, а также метода сингулярных разложений во временной области. М.В. Балабан, В.С. Булыгин, А.И. Носич, Н.К. Сахненко, Е.И. Смотрова, О.В. Шаповал
  • Резонаторы. Исследована природа и характеристики решеточных резонансов в двумерном рассеянии и поглощении волн периодическими структурами из конечного и бесконечного числа плоских диэлектрических и металлических лент и из нитей кругового сечения, плазмонных мод металлических лент и нитей, а также мод шепчущей галереи в тонком трехмерном диэлектрическом диске. М.В. Балабан, Д.М. Натаров, А.И. Носич, В.О. Шаповал
  • Лазеры. Исследованы моды двумерного микролазера в виде активного тела в форме кайта и спирали, бесконечной решетки из активных нитей, бинарной решетки из активных и металлических нитей, а также нанолазера на основе металлической нити с активной оболочкой. Д.М. Натаров, А.И. Носич, Е.И. Смотрова
  • Графен. Начато исследование плазмонных резонансов в рассеянии и поглощении терагерцевых волн лентами и дисками из графена, а также решетками из таких лент, в свободном пространстве. М.В. Балабан, А.И. Носич, О.В. Шаповал
  • Сенсоры. Исследованы чувствительности наносенсоров показателя преломления в виде металлической нанотрубки и ножевой решетки из нанолент. О.В. Шаповал
  • Антенны. Исследованы трехмерные квазиоптические антенны в виде идеально проводящего параболоида вращения, параболоида с коническим щитом, и тонкого резистивного или диэлектрического диска. М.В. Балабан, В.С. Булыгин, А.И. Носич
  • Процессы. Исследованы процессы трансформации электромагнитных полей в открытых резонаторах, материальные свойства которых изменяются скачком во времени, а также при их возбуждении импульсными источниками. Н.К. Сахненко
  • История микроволн. Уточнены обстоятельства разработки магнетронов и радиолокаторов дм-диапазона в УФТИ в 1930-е годы, подана заявка в IEEE History Committee и получено положительное решение на статус IEEE Milestone для радиолокатора «Зенит». А.И. Носич

Основные публикации

1. Метод аналитической регуляризации и метод Найстрема

  • 1.1. A.I. Nosich, "Excitation of a 2-D open resonator containing a diffraction grating," Doklady Akademii Nauk Ukrainskoi SSR, ser. A, no 3, pp. 51-55, 1985 (in Russian).
  • 1.2. A.I. Nosich, "Accurate solution of wave diffraction problems for nonclosed circular screens in stratified dielectric medium," Doklady Akademii Nauk Ukrainskoi SSR, ser. A, no 10, pp. 47-51, 1986 (in Russian).
  • 1.3. A.I. Nosich, "Green's function - dual series approach in wave scattering from combined resonant scatterers," in M. Hashimoto, M. Idemen and O.A. Tretyakov (Eds.), Analytical and Numerical Methods in Electromagnetic Wave Theory, Tokyo: Science House Publ., pp. 419-469, 1993.
  • 1.4. A.I. Nosich, "Method of Analytical Regularization in wave-scattering and eigenvalue problems: foundations and review of solutions," IEEE Antennas and Propagation Magazine, vol. 42, no 3, pp. 34-49, 1999.
  • 1.5. A. Altintas, A.I. Nosich, "The method of regularization and its application to some electromagnetic problems," in N.K. Uzunoglu, K.S. Nikita, D.I. Kaklamani (Eds.), Applied Computational Electromagnetics, NATO-ASI Series F, Berlin: Springer, pp. 409-423, 2000.
  • 1.6. A.I. Nosich, "Method of analytical regularization based on the static part inversion in wave scattering by imperfect thin screens," J. Telecommunications and Information Technology, Warsaw: NIT Press, no 3, pp. 72-79, 2001.
  • 1.7. S.V. Boriskina, P. Sewell, T.M. Benson, A.I. Nosich, "Accurate simulation of 2D optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization," J. Optical Society of America A, vol. 21, no 3, pp. 393-402, 2004. [pdf]
  • 1.8. M.V. Balaban, R. Sauleau, T.M. Benson, A.I. Nosich, "Dual integral equations technique in electromagnetic wave scattering by a thin disk," Progress in Electromagnetic Research B, vol. 16, pp. 107-126, 2009.
  • 1.9. V.S. Bulygin, A.I. Nosich, Y.V. Gandel, "Nystrom-type method in three-dimensional electromagnetic diffraction by a finite PEC rotationally symmetric surface," IEEE Trans. Antennas and Propagation, vol. 60, no 10, pp. 4710-4718, 2012.
  • 1.10. M.V. Balaban, E.I. Smotrova, O.V. Shapoval, V.S. Bulygin, A.I. Nosich, "Nystrom-type techniques for solving electromagnetics integral equations with smooth and singular kernels," Int. J. Numerical Modeling: Electronic Networks, Devices and Fields, vol. 25, no 5-6, pp. 490-511, 2012. Special Issue on Nontraditional Differential and Integral Equation Discretization Schemes
  • 1.11. I.O. Sukharevsky, O.V. Shapoval, A.I. Nosich, A. Altintas, "Validity and limitations of the median-line integral equation technique in the scattering by material strips of sub-wavelength thickness," IEEE Trans. Antennas and Propagation, vol. 62, no 7, pp. 3623-3631, 2014.
2. Микро и нано-резонаторные лазеры
  • 2.1. E.I. Smotrova, A.I. Nosich, "Mathematical study of the two-dimensional lasing problem for the whispering-gallery modes in a circular dielectric microcavity," Optical and Quantum Electronics, vol. 36, no 1-3, pp. 213-221, 2004.
  • 2.2. E.I. Smotrova, A.I. Nosich, T.M. Benson, P. Sewell, "Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis," IEEE J. Selected Topics in Quantum Electronics, vol. 11, no 5, pp. 1135-1142, 2005. [pdf] Special Issue on Semiconductor Lasers
  • 2.3. E.I. Smotrova, A.I. Nosich, T.M. Benson, P. Sewell, "Optical coupling of whispering gallery modes of two identical microdisks and its effect on the lasing spectra and thresholds," IEEE J. Selected Topics in Quantum Electronics, vol. 12, no 1, pp. 78-85, 2006. [pdf with comment] Special Issue on Microresonators
  • 2.4. E.I. Smotrova, A.I. Nosich, T.M. Benson, P. Sewell, "Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes, " Optics Letters, vol. 31, no 7, pp. 921-923, 2006. 2.5. E.I. Smotrova, A.I. Nosich, T.M. Benson, P. Sewell, "Ultralow lasing thresholds of the pi-type supermodes in cyclic photonic molecules composed of sub-micron disks with monopole and dipole modes," IEEE Photonics Technology Letters, vol. 18, no 19, pp. 1993-1995, 2006.
  • 2.6. V.O. Byelobrov, A.I. Nosich, "Mathematical analysis of the lasing eigenvalue problem for the optical modes in a layered dielectric microcavity with a quantum well and distributed Bragg reflectors," Optical and Quantum Electronics, vol. 39, no 10-11, pp. 927-937, 2007.
  • 2.7. A.I. Nosich, E.I. Smotrova, S.V. Boriskina, T.M. Benson, P. Sewell, "Trends in microdisk laser research and linear optical modeling," Optical and Quantum Electronics, vol. 39, no 15, pp. 1253-1272, 2007. Invited paper 2.8. T. Benson, A. Nosich, E. Smotrova, M. Balaban, P. Sewell, "Laser eigenvalue problems: The electromagnetic modelling of microlasers," Proc. SPIE, vol. 6452, pp. 64520L/8, 2007. Special Issue: Laser Resonators and Beam Control
  • 2.9. E.I. Smotrova, T.M. Benson, P. Sewell, J. Ctyroky, A.I. Nosich, "Lasing frequencies and thresholds of the dipole-type supermodes in an active microdisk concentrically coupled with a passive microring," J. Optical Society America A, vol. 25, no 11, pp. 2884-2892, 2008.
  • 2.10. E.I. Smotrova, T.M. Benson, P. Sewell, J. Ctyroky, R. Sauleau, A.I. Nosich, "Optical fields of the lowest modes in a uniformly active thin sub-wavelength spiral microcavity," Optics Letters, vol. 34, no 24, pp. 3773-3775, 2009. 2.11. V.O. Byelobrov, J. Ctyroky, T.M. Benson, R. Sauleau, A. Altintas, A.I. Nosich, "Low-threshold lasing eigenmodes of an infinite periodic chain of quantum wires," Optics Letters, vol. 35, no 21, pp. 3634-3636, 2010. [pdf]
  • 2.12. E.I. Smotrova, V.O. Byelobrov, T.M. Benson, J. Ctyroky, R. Sauleau, A.I. Nosich, "Optical theorem helps understand thresholds of lasing in microcavities with active regions," IEEE J. Quantum Electronics, vol. 47, no 1, pp. 20-30, 2011.
  • 2.13. R. I. Shekhter, A.M. Kadigrobov, M. Jonson, E.I. Smotrova, A.I. Nosich, V. Korenivski, "Sub-wavelength terahertz spin-flip laser based on a magnetic point-contact array," Optics Letters, vol. 36, no 12, pp. 2381-2383, 2011.
  • 2.14. V.O. Byelobrov, T.M. Benson, A.I. Nosich, "Binary grating of sub-wavelength silver and quantum wires as a photonic-plasmonic lasing platform with nanoscale elements," IEEE J. Selected Topics in Quantum Electronics, vol. 18, no 6, pp. 1839-1846, 2012. Special Issue on Quantum and Nanoscale Photonics
  • 2.15. E.I. Smotrova, V. Tsvirkun, I. Gozhyk, C. Lafargue, C. Ulysse, M. Lebental, A.I. Nosich, "Spectra, thresholds and modal fields of a kite-shaped microcavity laser," J. Optical Society America B, vol. 40, no 6, pp. 1732-1742, 2013.
  • 2.16. E.I. Smotrova, A.I. Nosich, "Optical coupling of an active microdisk to a passive one: effect on the lasing thresholds of the whispering-gallery supermodes," Optics Letters, vol. 38, no 12, pp. 2059-2061, 2013.
  • 2.17. D.M. Natarov, "Modes of a core-shell silver wire plasmonic nanolaser beyond the Drude formula," IOP J. of Optics, vol. 16, vol. 16, no 7, pp. 075002/6, 2014.
3. Плазмонные и периодические наносенсоры – рассеяние и поглощение
  • 3.1 D.M. Natarov, V.O. Byelobrov, R. Sauleau, T.M. Benson, A.I. Nosich, "Periodicity-induced effects in the scattering and absorption of light by infinite and finite gratings of circular silver nanowires," Optics Express, vol. 19, no 22, pp. 22176-22190, 2011. Focus Issue “Collective phenomena in photonic, plasmonic and hybrid structures”
  • 3.2 D.M. Natarov, R. Sauleau, A.I. Nosich, "Periodicity-enhanced plasmon resonances in the scattering of light by sparse finite gratings of circular silver nanowires," IEEE Photonics Technology Letters, vol. 24, no 1, pp. 43-45, 2012.
  • 3.3 O.V. Shapoval, R. Sauleau, A.I. Nosich, "Grating and plasmon resonances in the scattering of light by finite silver nanostrip gratings," Int. J. Semiconductor Physics, Quantum Electronics, and Optoelectronics, Kiev, ISP NASU Press, vol. 15, no, 3, pp. 200-203, 2012.
  • 3.4 D.M. Natarov, R. Sauleau, A.I. Nosich, "Resonance scattering and absorption of light by finite two-period gratings of circular silver nanowires," Int. J. Semiconductor Physics, Quantum Electronics, and Optoelectronics, Kiev, ISP NASU Press, vol. 15, no 3, pp. 204-208, 2012.
  • 3.5 O.V. Shapoval, A.I. Nosich, "Finite gratings of many thin silver nanostrips: optical resonances and role of periodicity," AIP Advances, vol. 3, no 4, pp. 042120/13, 2013.
  • 3.6 O.V. Shapoval, R. Sauleau, A.I. Nosich, "Modeling of plasmon resonances of multiple flat noble-metal nanostrips with a median-line integral equation technique," IEEE Trans. Nanotechnology, vol. 12, no 3, pp. 442-449, 2013.
  • 3.7 T.L. Zinenko, M. Marciniak, A.I. Nosich, "Accurate analysis of light scattering and absorption by an infinite flat grating of thin silver nanostrips in free space using the method of analytical regularization," IEEE J. Selected Topics in Quantum Electronics, vol. 19, no 3, pp. 9000108/8, 2013. Special Issue on Nanoplasmonics
  • 3.8 O.V. Shapoval, J. Ctyroky, A.I. Nosich, "Resonance effects in the optical antennas shaped as finite comb-like gratings of noble-metal nanostrips," Proc. SPIE, vol. 8781, pp. 87810U/8, 2013. Special Issue on Integrated Optics: Physics and Simulation
  • 3.9 E.A. Velichko, A.I. Nosich, "Refractive-index sensitivities of hybrid surface-plasmon resonances for a core-shell circular silver nanotube sensor," Optics Letters, vol. 38, no 23, pp. 4978-4981, 2013.
  • 3.10 D.M. Natarov, R. Sauleau, M. Marciniak, A.I. Nosich, "Effect of periodicity in the resonant scattering of light by finite sparse configurations of many silver nanowires," Plasmonics, vol. 9, no 2, pp. 389-407, 2014.
  • 3.11 D.M. Natarov, M. Marciniak, R. Sauleau, A.I. Nosich, "Seeing the order in a mess: optical signature of periodicity in a cloud of plasmonic nanowires," Optics Express, vol. 22, no. 23, pp. 28190–28198, 2014.
  • 3.12 O.V. Shapoval, "Comparison of bulk refractive-index sensitivities of optical-mode resonances of a finite comb-like grating of silver nanostrips," IEEE J. of Quantum Electronics, vol. 51, no 4, art. no. 7200108, 2015.
  • 3.13 O.V. Shapoval, "Scattering of light waves by finite metal nanostrip gratings: Nystrom-type method and resonance effects," Radioelectronics and Communications Systems, Kiev, NTU KPI Press, vol. 58, no 5, pp. 201-211, 2015.
  • 3.14 T.L. Zinenko, V.O. Byelobrov, M. Marciniak, J. Ctyroky, A.I. Nosich, "Grating resonances on periodic arrays of sub-wavelength wires and strips: from discoveries to photonic device applications," in O.V. Shulika, I.A. Sukhoivanov (Eds.), Contemporary Optoelectronics: From (Meta)Materials to Device Applications, Springer Series in Optical Sciences, 2015, will be published.
4. Терагерцевые антенны и сенсоры на основе графена – рассеяние и поглощение
  • 4.1. O.V. Shapoval, J. S. Gomez-Diaz, J. Perruisseau-Carrier, J. Mosig, A.I. Nosich, "Integral equation analysis of plane wave scattering by coplanar graphene-strip gratings in the THz range," IEEE Trans. Terahertz Science and Technology, vol. 3, no 5, pp. 666-673, 2013.
  • 4.2. M.V. Balaban, O.V. Shapoval, A.I. Nosich, "THz wave scattering by a graphene strip and a disk in the free space: integral equation analysis and surface plasmon resonances," IOP J. of Optics, vol. 15, no 11, pp. 114007/9, 2013. Special Issue on Graphene Nanophotonics
5. Диэлектрические экраны, линзы, призмы и оболочки - рассеяние и поглощение
  • 5.1. A.V. Boriskin, A.I. Nosich, "Whispering-gallery and Luneburg lens effects in a beam-fed circularly-layered dielectric cylinder," IEEE Trans. Antennas and Propagation, vol. 50, no 9, pp. 1245-1249, 2002.
  • 5.2. A.V. Boriskin, A.I. Nosich, S.V. Boriskina, P. Sewell, T.M. Benson, A. Altintas, "Lens or resonator? - Electromagnetic behavior of an extended hemielliptic lens antenna for a sub-mm wave receiver," Microwave and Optical Technology Lett., vol. 43, no 6, pp. 515-518, 2004.
  • 5.3. A.V. Boriskin, G. Godi, A. Rolland, R. Sauleau, A.I. Nosich, "Comparative research of the adequacy of GO/PO, FDTD, and IE-based numerical algorithms for analyzing compact dielectric lenses in mm and sub-mm integrated antennas," Radio Physics and Electronics, Kharkiv, IRE NASU Press, vol. 12, no 2, pp. 306-318, 2007 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., 2009, vol. 68, no 1, pp. 1-26.
  • 5.4. A.V. Boriskin, G. Godi, R. Sauleau, A.I. Nosich, "Small hemielliptic dielectric lens antenna analysis: boundary integral equations versus geometrical and physical optics", IEEE Trans. Antennas and Propagation, vol. 56, no 2, pp. 485-492, 2008.
  • 5.5. A.V. Boriskin, A. Rolland, R. Sauleau, A.I. Nosich, "Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis," IEEE Trans. Antennas and Propagation, vol. 56, no 3, pp. 758-764, 2008.
  • 5.6. A.V. Boriskin, S.V. Boriskina, A. Rolland, R. Sauleau, A.I. Nosich, "Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder," J. Optical Society of America A, vol. 25, no 5, pp. 1169-1173, 2008.
  • 5.7. A.V. Boriskin, R. Sauleau, A.I. Nosich, "Exact off-resonance near fields of small-size extended hemielliptic lenses illuminated by plane waves," J. Optical Society of America A, vol. 26, no 2, pp. 259-264, 2009.
  • 5.8. A.V. Boriskin, R. Sauleau, A.I. Nosich, "Performance of hemielliptic dielectric lens antennas with optimal edge illumination," IEEE Trans. Antennas and Propagation, vol. 57, no 7, pp. 2193-2198, 2009.
  • 5.9. M.V. Balaban, R. Sauleau, T.M. Benson, A.I. Nosich, "Accurate quantification of the Purcell effect in the presence of a dielectric microdisk of nanoscale thickness," IET Micro and Nano Letters, vol. 6, no 6, pp. 393-396, 2011.
  • 5.10. O.V. Shapoval, R. Sauleau, A.I. Nosich, "Scattering and absorption of waves by flat material strips analyzed using generalized boundary conditions and Nystrom-type algorithm," IEEE Trans. Antennas and Propagation, vol. 59 no 9, pp. 3339-3346, 2011.
  • 5.11. N.L. Tsitsas, C.A. Valagiannopoulos, A.I. Nosich, "Scattering and absorption of a complex source point beam by a grounded lossy dielectric slab with a superstrate," IOP J. of Optics, vol. 16, no 10, pp. 105712/10, 2014.
  • 5.12. I.O. Sukharevsky, A.I. Nosich, A. Altintas, "Manipulation of backscattering from a dielectric cylinder of triangular cross-section using the interplay of GO-like ray effects and resonances," IEEE Trans. Antennas and Propagation, vol. 63, no 5, pp. 2162-2169, 2015.
6. Диэлектрические открытые резонаторы – задачи на собственные частоты
  • 6.1. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Effect of a layered environment on the complex natural frequencies of 2D WG-mode dielectric-ring resonators", IEEE/OSA J. Lightwave Technology, vol. 20, no 8, pp. 1563-1572, 2002.
  • 6.2. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Highly efficient design of spectrally engineered whispering-gallery-mode microlaser resonators", Optical and Quantum Electronics, vol. 35, no 4, pp. 545-559, 2003.
  • 6.3. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness", J. Optical Society of America B, vol. 21, no 10, pp. 1792-1796, 2004.
  • 6.4. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Optical modes in imperfect square and triangular microcavities," IEEE J. Quantum Electronics, vol. 41, no 6, pp. 857-864, 2005.
  • 6.5. T.M. Benson, S.V. Boriskina, P. Sewell, A. Vukovic, S. Greedy, A.I. Nosich, "Micro-optical resonators for microlasers and integrated optoelectronics," in S. Janz, J. Ctyroky and S. Tanev (Eds.), Frontiers of Planar Lightwave Circuit Technology: Design, Simulation and Fabrication, Berlin, Springer Publ., pp. 40-70, 2005.
  • 6.6. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Q factor and emission pattern control of the WG modes in notched microdisk resonators," IEEE J. Selected Topics in Quantum Electronics, vol. 12, no 1, pp. 52-58, 2006. Special Issue on Microresonators
  • 6.7. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Directional emission, increased free spectral range, and mode Q-factors of 2-D wavelength-scale optical microcavity structures", IEEE J. Selected Topics in Quantum Electronics, vol. 12, no 6, pp. 1175-1182, 2006. Special Issue on Nanophotonics
  • 6.8. V.S. Bulygin, Y.V. Gandel, A. Vukovic, T.M. Benson, P. Sewell, A.I. Nosich, "Nystrom method for the Muller boundary integral equations on a dielectric body of revolution: axially symmetric problem", IET Microwaves, Antennas and Propagation,, vol. 9, no 5, 2015, will be published.
7. Открытые волноводы - рассеяние и поглощение
  • 7.1. A.I. Nosich, V.P. Shestopalov, "Excitation of a partially shielded dielectric rod by lumped sources," Soviet Physics - Technical Physics, vol. 28, no 12, pp. 1421-1426, 1983.
  • 7.2. A.I. Nosich, V.P. Shestopalov, "Self-consistent solution of the problem of diffraction by a discontinuity in an open waveguide", Soviet Physics Doklady, vol. 30, no 9, pp. 773-775, 1985.
  • 7.3. A.I. Nosich, "Scattering of the surface wave of an open impedance waveguide by an unclosed cylindrical screen," Soviet Physics - Technical Physics, vol. 31, no 8, pp. 883-889, 1986.
  • 7.4. A.I. Nosich, "Radiation conditions for open waveguides," Soviet Physics Doklady , vol. 32, no 9, pp. 720-722, 1987.
  • 7.5. A.I. Nosich, V.P. Shestopalov, "Radiation conditions and uniqueness theorems for open waveguides", Soviet J. Communications Technology and Electronics , vol. 34, no 2, pp. 107-115, 1989.
  • 7.6. A.S. Andrenko, A.I. Nosich, "Scattering of dielectric slab modes from resonant inhomogeneities," Doklady Akademii Nauk Ukrainskoi SSR, ser. A, no 4, pp. 51-55, 1989 (in Russian).
  • 7.7. A.S. Andrenko, A.I. Nosich, V.P. Shestopalov, "Reciprocity theorem in problems concerning the scattering of waves by irregularities in open planar waveguides," Soviet Physics Doklady, vol. 35, no 4, pp. 366-368, 1990.
  • 7.8. A.S. Andrenko, V.V. Kryzhanovsky, A.I. Nosich, V.P. Shestopalov, "Rejection filter," USSR Patent, 1990, no 1569981.
  • 7.9. A.S. Andrenko, A.I. Nosich, "H-scattering of thin-film modes from periodic gratings of finite extent," Microwave and Optical Technology Lett., vol. 5, no 7, pp. 333-337, 1992.
  • 7.10. A.I. Nosich, A.S. Andrenko, "Scattering and mode conversion by a screen-like inhomogeneity inside a dielectric-slab waveguide," IEEE Trans. Microwave Theory and Techniques, vol. MTT-42, no 2, pp. 298-307, 1994.
  • 7.11. A.I. Nosich, "Radiation conditions, limiting absorption principle, and general relations in open waveguide scattering," J. Electromagn. Waves and Applications, vol. 8, no 3, pp. 329-353, 1994.
  • 7.12. S.V. Boriskina, A.I. Nosich, "Numerical simulation of surface-wave band-stop filters," Microwave and Optical Technology Lett., vol. 13, no 3, pp. 169-173, 1996.
  • 7.13. S.V. Boriskina, A.I. Nosich, "CAD-oriented numerical analysis of the surface wave bandstop filters based on a whispering-gallery-mode dielectric resonator and a slotted metallic cavity resonator", Radio Physics and Radio Astronomy, Kharkiv, IRA NASU Press, vol. 2, no 3, pp. 333-341, 1997. Re-published in Telecommunications and Radio Engineering, Begell House Publ., vol. 51, no 2-3, pp. 103-111, 1997.
  • 7.14. S.V. Boriskina, A.I. Nosich, "Radiation and absorption losses of the whispering-gallery-mode dielectric resonator excited by a dielectric waveguide," IEEE Trans. Microwave Theory and Techniques, vol. MTT-47, no 2, pp. 224-231, 1999.
  • 7.15. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Tuning of elliptic whispering-gallery-mode microdisk waveguide filters", IEEE/OSA J. Lightwave Technology, vol. 21, no 9, pp. 1987-1995, 2003.
8. Открытые волноводы – задачи на собственные волны
  • 8.1. E.I. Veliev, A.I. Nosich, V.P. Shestopalov, "On the theory of the slot mode", Doklady Akademii Nauk Ukrainskoi SSR, ser. A, no 10, pp. 928-931, 1976 (in Russian).
  • 8.2. E.I. Veliev, A.I. Nosich, V.P. Shestopalov, "Propagation of electromagnetic waves in a cylindrical waveguide with a longitudinal slit", Radio Engn. Electronic Physics, vol. 22, pp. 29-35, 1977.
  • 8.3. A.I. Nosich, V.P. Shestopalov, "A slotted circular microwave guide", Soviet Physics Doklady, vol. 23, no 7, pp. 505-506, 1978.
  • 8.4. A.I. Nosich, V.P. Shestopalov, "Slot line", USSR Patent, 1979, no 698085.
  • 8.5. A.I. Nosich, V.P. Shestopalov, "Waveguiding properties of open metallized dielectric transmission lines of the cylindrical type", Radio Engn. Electronic Physics, vol. 24, pp. 1-9, 1979.
  • 8.6. A.I. Nosich, V.P. Shestopalov, "Ohmic losses in transmission lines with thin conductors," Soviet Physics Doklady, vol. 25, no 2, pp. 127-128, 1980.
  • 8.7. A.I. Nosich, V.P. Shestopalov, "Characteristic impedance and energy losses in a cylindrical slotted transmission line", Radio Engn. and Electronic Physics, vol. 28, no 4, pp. 51-56, 1983.
  • 8.8. S.D. Andrenko, V.V. Kryzhanovsky, A.I. Nosich, V.P. Shestopalov, "Experimental investigation of the propagation of electromagnetic waves in a cylindrical slotted line," Radio Engn. and Electronic Physics, vol. 28, no 5, pp. 60-65, 1983.
  • 8.9. G.I. Komar, A.I. Nosich, V.P. Shestopalov, "Waveguiding properties of slotted image transmission lines," Soviet J. Communication Technology and Electronics , vol. 30, no 2, pp. (211-217), 1985.
  • 8.10. A.I. Nosich, A.Y. Poedinchuk, V.P. Shestopalov, "Discrete spectrum of the characteristic waves in open partially screened dielectric core," Soviet Physics Doklady, vol. 30, no 8, pp. 669-671, 1985.
  • 8.11. A.I. Nosich, A.Y. Svezhentsev, V.P. Shestopalov, "Spectrum of quasi-TEM waves in a partially screened dielectric core", Soviet Physics Doklady, vol. 31, no 7, pp. 559-561, 1986.
  • 8.12. V.V. Kryzhanovsky, A.I. Nosich, A.Y. Svezhentsev, V.P. Shestopalov, "Theoretical and experimental investigation of cylindrical microstrip line modes", Doklady Akademii Nauk Ukrainskoi SSR, ser. A, no 10, pp. 43-46, 1986 (in Russian).
  • 8.13. A.I. Nosich, A.Y. Poedinchuk, V.P. Shestopalov, "Existence of discrete spectrum and singular types of waves in an open waveguide", Soviet Physics Doklady , vol. 32, no 3, pp. 216-218, 1987.
  • 8.14. V.V. Kryzhanovsky, A.I. Nosich, A.Y. Svezhentsev, V.P. Shestopalov, "Microstrip transmission line", USSR Patent, 1988, no 1453481
  • 8.15. A.I. Nosich, A.Y. Svezhentsev, V.P. Shestopalov, "Electrodynamic analysis of the discrete spectrum of characteristic modes of a partially screened dielectric rod", Soviet J. Communication Technology and Electronics , vol. 33, no 3, pp. 18-26, 1988.
  • 8.16. A.I. Nosich, A.Y. Svezhentsev, V.P. Shestoplalov, "Attenuation of the slot and quasi-H11 modes in a cylindrical slot line", Doklady Akademii Nauk Ukrainskoi SSR, ser. A, no 3, pp. 45-49, 1988 (in Russian).
  • 8.17. A.I. Nosich, A.Y. Svezhentsev, "Spectral theory of principal and higher order modes in open circular cylindrical slot and strip lines", Proc. URSI-B Int. Symp. Electromagnetic Theory, Stockholm, 1989, pp. 536-538.
  • 8.18. A.I. Nosich, A.Y. Svezhentsev, "On the effect of cross-sectional compactness on modes behaviour in microstrip and slot lines", Proc. Asia-Pacific Microwave Conf. (APMC-90), Tokyo, 1990, pp. 1015-1018.
  • 8.19. A.I. Nosich, A.Y. Svezhentsev, "Physical features of wave propagation in cylindrical slot and strip lines", Soviet J. Communications Technology and Electronics , vol. 35, no 1, pp. 51-59, 1990.
  • 8.20. A.I. Nosich, A.Y. Svezhentsev, "Accurate computation of mode characteristics for open-layered circular cylindrical microstrip and slot lines," Microwave and Optical Technology Lett., vol. 4, no 7, pp. 274-277, 1991.
  • 8.21. A.I. Nosich, A.Y. Svezhentsev, "Principal and higher order modes of microstrip and slot lines on a cylindrical substrate," Electromagnetics, vol. 13, no 1, pp. 85-94, 1993.
  • 8.22. L. Richard, A.I. Nosich, J.-P. Daniel, "Revisiting the waves on a coated cylinder by using surface-impedance model", IEEE Trans. Antennas and Propagation, vol. AP-47, no 8, pp. 1374-1375, 1999.
  • 8.23. A.I. Nosich, "Foundations of the theory of open waveguides", J. Telecommunications and Information Technology, Warsaw: NIT Press, no 1-2, pp.42-45, 2000.
  • 8.24. Y.M. Kartchevskii, A.I. Nosich, S.I. Solovyov, "Eigenmodes of dielectric waveguides with non-sharp boundaries," Trudy Matematicheskogo Tsentra (Proc. of the Mathematics Center), Kazan: Kazan State University Press, vol. 6, pp.79-114, 2000 (in Russian).
  • 8.25. S.V. Boriskina, T.M. Benson, P. Sewell, A.I. Nosich, "Highly efficient full-vectorial integral equation solution for the bound, leaky, and complex modes of dielectric waveguides", IEEE J. on Selected Topics in Quantum Electronics, vol. 8, no 6, pp. 1225-1232, 2002.
  • 8.26. Y.M. Kartchevskii, A.I. Nosich, G.W. Hanson, "Mathematical analysis of the generalized natural modes of an inhomogeneous optical fiber," SIAM J. Applied Mathematics, vol. 65, no 6, pp. 2033-2048, 2005.
9. Решетки - рассеяние и поглощение
  • 9.1. E.I. Veliev, A.I. Nosich, V.P. Shestopalov, "Radiation of an electron flux moving over a grating consisting of cylinders with longitudinal slots", Radiophysics and Quantum Electronics , vol. 20, no 3, pp. 306-313, 1977.
  • 9.2. T.L. Zinenko, A.I. Nosich, Y. Okuno, "Plane wave scattering and absorption by resistive-strip and dielectric-strip periodic gratings," IEEE Trans. Antennas and Propagation, vol. 46, no 10, pp. 1498-1505, 1998.
  • 9.3. T.L. Zinenko, A.I. Nosich, "Plane wave scattering and absorption by flat gratings of impedance strips," IEEE Trans. Antennas and Propagation, vol. 54, no 7, pp. 2088-2095, 2006.
  • 9.4. V.O. Byelobrov, T.M. Benson, "Extraordinary high-Q resonances in the scattering by a dielectric slab containing a grating of circular cylinders," Int. J. Semiconductor Physics, Quantum Electronics, and Optoelectronics, Kiev, ISP NASU Press, vol. 17, no 1, pp. 100-105, 2014.
  • 9.5. V.O. Byelobrov, T.L. Zinenko, K. Kobayashi, A.I. Nosich, "Periodicity matters: grating or lattice resonances in the scattering by sparse arrays of sub-wavelength strips and wires," IEEE Antennas and Propagation Magazine, vol. 57, no 4, 2015, will be published.
10. Идеально проводящие и резистивные экраны и резонаторы - рассеяние и поглощение
  • 10.1. A.I. Nosich, V.P. Shestopalov, "An electromagnetic analog of a Helmholtz resonator", Soviet Physics Doklady, vol. 22, no 4, pp. 251-253, 1977.
  • 10.2. A.I. Nosich, "On the effect of resonances on the scattering characteristics of a nonclosed cylinder," Radiotekhnika i Elektronika, vol. 23, no 8, pp. 1733-1737, 1978 (in Russian).
  • 10.3. A.I. Nosich, V.P. Shestopalov, "Resonant ponderomotive effects in the scattering and emission of electromagnetic waves," Soviet Physics Doklady, vol. 24, no 9, pp. 730-732, 1979.
  • 10.4. A.I. Nosich, "Diffraction radiation which accompanies the motion of charged particles near an open resonator," Radiophysics and Quantum Electronics, vol. 24, no 8, pp. 1014-1021, 1981.
  • 10.5. E.I. Veliev, V.V. Veremey, A.I. Nosich, V.P. Shestopalov, "Trapping effect for an open screen illuminated by a fixed source," Radiophysics and Quantum Electronics, vol. 25, no 4, pp. 298-305, 1982.
  • 10.6. E.I. Veliev, V.V. Veremey, A.I. Nosich, V.P. Shestopalov, "Radar target," USSR Patent, 1985, no 1358022.
  • 10.7. N.V. Veremey, A.I. Nosich, "Electrodymanic modelling of open resonators with diffraction gratings," Radiophysics and Quantum Electronics, vol. 32, no 2, pp. 166-172, 1989.
  • 10.8. N.V. Veremey, A.I. Nosich, V.V. Veremey, "TE excitation of an unclosed circular cylinder at the planar penetrable interface," Electromagnetics, vol. 13, no 2, pp. 169-186, 1993.
  • 10.9. D. Colak, A.I. Nosich, A. Altintas, "Radar cross section study of cylindrical cavity-backed apertures with outer or inner material coating: the case of E-polarization," IEEE Trans. Antennas and Propagation, vol. 41, no 11, pp. 1551-1559, 1993.
  • 10.10. A.I. Nosich, "On the theory of the two-dimensional Helmholtz resonator with a circular impedance surface," Acoustics of Non-Homogeneous Media, Novosibirsk: IHD Press, no 109, pp. 127-132, 1994 (in Russian).
  • 10.11. D. Colak, A.I. Nosich, A. Altintas, "Radar cross section study of cylindrical cavity-backed apertures with inner or outer material coating: the case of H-polarization," IEEE Trans. Antennas and Propagation, vol. 43, no 5, pp. 440-447, 1995.
  • 10.12. K. Kobayashi, A.I. Nosich, "Radar cross section analysis of 2-D, canonical material-loaded cavity-backed apertures of rectangular and circular cross-section," Annales des Telecommunications, vol. 50, no 5-6, pp. 517-522, 1995. [pdf] Special Issue on Radar Cross Section of Complex Objects
  • 10.13. A.I. Nosich, Y. Okuno, T. Shiraishi, "Scattering and absorption of E and H-polarized plane waves by a circularly curved resistive strip," Radio Science, vol. 31, no 6, pp. 1733-1742, 1996.
  • 10.14. S. Koshikawa, D. Colak, A. Altintas, K. Kobayashi, A.I. Nosich, "A comparative study of RCS predictions of canonical rectangular and circular cavities with double-layer material loading," IEICE Trans. Electronics - Japan, vol. E80-C, no 11, pp. 1457-1466, 1997. [pdf] Special Issue on Electromagnetic Theory
  • 10.15. A.E. Serebryannikov, A.I. Nosich, "TE-case RCS analysis of finite-thickness slotted circular cylinder loaded with lossy filling," IEEE Trans. Antennas and Propagation, vol. 53, no 4, pp. 1426-1434, 2005.
  • 10.16. A.E. Serebryannikov, A.I. Nosich, "TE-wave penetration into finite-thickness slotted circular cylinder with lossy and lossless inner coatings," IEEE Trans. Electromagnetic Compatibility, vol. 47, no 4, pp. 709-716, 2005.
  • 10.17. M.V. Balaban, "Mathematical model of electromagnetic wave diffraction by a resistive disk," Radio Physics and Electronics, Kharkiv, IRE NASU Press, vol. 10, no 1, pp. 45-50, 2005 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 65, no 11, pp. 967-976, 2006.
  • 10.18. M.V. Balaban, A.I. Nosich, "Radiation of complex electric and magnetic dipoles in the presence of a perfectly conducting disk," Radio Physics and Electronics, Kharkiv, IRE NASU Press, vol. 15, no 3, pp. 4-10, 2010 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 72, no 10, pp. 841-852, 2013.
11. Идеально проводящие и резистивные рефлекторные антенны - рассеяние и поглощение
  • 11.1. T. Oguzer, A. Altintas, A.I. Nosich, "Accurate simulation of reflector antennas by complex source - dual series approach", IEEE Trans. Antennas and Propagation, vol. 43, no 8, pp. 793-801, 1995.
  • 11.2. A.I. Nosich, V.B. Yurchenko, A. Altintas, "Numerically exact analysis of 2-D variable-resistivity reflector fed by a complex-point source", IEEE Trans. Antennas and Propagation, vol. 45, no 11, pp. 1592-1601, 1997.
  • 11.3. S.V. Boriskina, "Numerical analysis of radiation properties of a reflector antenna near Earth's surface", Kharkov State University Herald, 1998, no 405, pp. 71-74 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 53, no 7-8, pp. 39-42, 1999.
  • 11.4. V.B. Yurchenko, A. Altintas, A.I. Nosich, "Numerical optimization of a cylindrical reflector-in-radome antenna system", IEEE Trans. Antennas and Propagation, vol. 47, no 4, pp. 668-673, 1999.
  • 11.5. S.V. Boriskina, A.I. Nosich, A. Altintas, "Effect of the imperfect flat earth on the vertically-polarized radiation of a cylindrical reflector antenna", IEEE Trans. Antennas and Propagation, vol. 48, no 2, pp. 285-292, 2000. 11.6. S.S. Vinogradov, E.D. Vinogradova, A.I. Nosich, A. Altintas, "Analytical regularization based analysis of a spherical reflector symmetrically illuminated by an acoustic beam", J. Acoustical Society America, vol. 107, no 6, pp. 2999-3005, 2000.
  • 11.7. T. Oguzer, A.I. Nosich, A. Altintas, "E-polarized beam scattering by an open cylindrical PEC strip having arbitrary "conical-section" profile", Microwave and Optical Technology Lett., vol. 31, no 6, pp. 480-484, 2001.
  • 11.8. T. Oguzer, A.I. Nosich, A. Altintas, "Analysis of arbitrary conic section profile cylindrical reflector antenna, H-polarization case", IEEE Trans. Antennas and Propagation, vol. 52, no. 11, pp. 3156-3162, 2004.
  • 11.9. T. Oguzer, A. Altintas, A.I. Nosich, "Integral equation analysis of an arbitrary-profile and variable-resistivity cylindrical reflector illuminated by an E-polarized complex-source-point beam," J. Optical Society of America A, vol. 26, no 7, pp. 1525-1533, 2009.
  • 11.10. T. Oguzer, A. Altintas, A.I. Nosich, "Analysis of the elliptic profile cylindrical reflector with a non-uniform resistivity using the complex source and dual series approach: H-polarization case," Optical and Quantum Electronics, vol. 45, no 8, pp. 797-812, 2013.
  • 11.11. V.S. Bulygin, T.M. Benson, Y.V. Gandel, A.I. Nosich, "Full-wave analysis and optimization of a TARA-like shield-assisted paraboloidal reflector antenna using a Nystrom-type method," IEEE Trans. Antennas and Propagation, vol. 61, no 10, pp. 4981-4989, 2013.
12.  Идеально проводящие и резистивные печатные и конформные антенны - рассеяние и поглощение
  • 12.1 N.Y. Bliznyuk, A.I. Nosich, "Basic properties of the fields excited by VED and HMD located in a dielectric substrate backed by a perfectly conducting ground plane", Microwave and Optical Technology Lett., vol. 15, no 5, pp. 316-320, 1997.
  • 12.2 L. Richard, A.I. Nosich, J.-P. Daniel, "Dielectric coating influence on the radiation of a narrow slot on a metallic cylinder", Automatika, Zagreb, vol. 39, no 1-2, pp. 17-21, 1998.
  • 12.3 N.Y. Bliznyuk, "Numerical simulation of a microstrip disk antenna with axially-symmetric excitation", Radio Physics and Radio Astronomy, Kharkiv, IRA NASU Press, vol. 3, no 1, pp. 92-98, 1998 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 51, no 9, pp. 6-14, 1997.
  • 12.4 N.Y. Bliznyuk, A.I. Nosich, "Numerical analysis of a lossy circular microstrip antenna", Radio Physics and Electronics, Kharkiv, IRE NASU Press, vol. 4, no 3, pp. 125-128, 1999. Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 55, no 8, pp. 15-23, 2001.
  • 12.5 N.Y. Bliznyuk, A.I. Nosich, A.N. Khizhnyak, "Accurate computation of a circular-disk printed antenna axysimmetrically excited by an electric dipole", Microwave and Optical Technology Lett., vol. 25, no 3, pp. 211-216, 2000.
  • 12.6 V.V. Radchenko, A.I. Nosich, J.-P. Daniel, S.S. Vinogradov, "A conformal spherical-circular microstrip antenna: axisymmetric excitation by an electric dipole", Microwave and Optical Technology Lett., vol. 26, no 3, pp. 176-182, 2000.
  • 12.7 V.V. Radchenko, A.I. Nosich, J.-P. Daniel, S.S. Vinogradov, "Radiation of a dipole antenna on the surface of a partially screened layered sphere, axially symmetric case", Radio Physics and Electronics, Kharkiv, IRE NASU Press, vol. 5, no 1, pp. 42-48, 2000 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 55, no 4, pp. 40-49, 2001.
  • 12.8 N.Y. Bliznyuk, A.I. Nosich, "Numerical analysis of a dielectric disk antenna", Radio Physics and Electronics, Kharkiv, IRE NASU Press, vol. 5, no 1, pp. 49-54, 2000 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 61, no 4, pp. 273-284, 2004.
  • 12.9 V.V. Radchenko, "Radiation from a spherical-circular microstrip patch antenna excited by a slot", Radio Physics and Electronics, Kharkiv, IRE NASU Press, vol. 7, pp. 259-264, 2002 (in Russian). Translated to English in Telecommunications and Radio Engineering, Begell House Publ., vol. 59, no 7-9, pp. 42-56, 2003.
  • 12.10 S. Rondineau, A.I. Nosich, S.S. Vinogradov, J.-P. Daniel, M. Himdi, "MAR-based analysis of a spherical-circular printed antenna with a finite ground excited by an axially-symmetric probe", IEEE Trans. Antennas and Propagation, vol. 52, no 5, pp. 1270-1280, 2004.
  • 12.11 V.V. Radchenko, R. Sauleau, A.I. Nosich, "Radiation and absorption of waves emitted by a radial dipole in the presence a layered dielectric sphere with a spherical screen," IET Microwaves, Antennas and Propagation, vol. 6, no 9, pp. 1063-1069, 2012.
13.  История микроволн
  • 13.1 A.A. Kostenko, A.I. Nosich, I.A. Tishchenko, "Development of the first Soviet 3-coordinate L-band pulsed radar in Kharkov before WWII," IEEE Antennas and Propagation Magazine, vol. 44, no. 3, pp. 28-49, 2001.
  • 13.2 A.I. Nosich, Y.M. Poplavko, D.M. Vavriv, F.J. Yanovsky, "Microwaves in Ukraine," IEEE Microwave Magazine, vol. 2, no. 4, pp. 82-90, 2002.
  • 13.3 I.A. Tishchenko, A.I. Nosich, "Early quasi-optics of mm and sub-mm waves in IRE-Kharkov, Ukraine: from ideas to the Microwave Pioneer Award," IEEE Microwave Magazine, vol. 3, no. 4, pp. 32-44, 2003.
  • 13.4 A.A. Kostenko, A.I. Nosich, I.A. Tishchenko, "Magnetron and radar drama in Kharkov, Ukraine in the 1920-1930s," in H. Rohling (Ed.), 101 Years of Radar, Bonn: German Institute of Navigation, pp. 123-132, 2005.
  • 13.5 A.A. Kostenko, A.I. Nosich, P.F. Goldsmith, "Historical background and development of Soviet quasioptics at near-millimeter and sub-millimeter wavelengths," Ch. 15 in T. Sarkar (Ed.), History of Wireless, New York: Wiley, pp. 473-542, 2006.
  • 13.6 A.I. Nosich, A.A. Kostenko, "In the labor people's name: development of 60-kW magnetrons in the artificial famine plagued Ukraine in the early 1930s," Proc. Int. Conf. Origins and Evolution of the Cavity Magnetron (CAVMAG-2010), Bournemouth, 2010, pp. 82-88.

Награды

2015 А.И. Носич награжден званием почетного доктора (Docteur Honoris Causa) Университета г. Рен 1, Франция за 20-летний вклад в научное сотрудничество с Институтом электроники и телекоммуникаций этого университета
2014 м.н.с. О.В. Шаповал получила премию TICRA Foundation за доклад на Европейской конференции по антеннам и распространению волн
2014 с.н.с. Н.К. Сахненко награждена почетной грамотой IEEE за вклад в развитие IEEE и инженерных профессий, как председатель IEEE Chapter East Ukraine
2013 Н.К. Сахненко получила звание Senior Member международного научно-технического общества Institute of Electrical and Electronic Engineering
2013 н.с. М.В. Балабан награжден премией Украинского физического общества за доклад на Международном харьковском симпозиуме «Физика и техника микроволн, мм и суб-мм волн»
2012 А.И. Носич получил звание Senior Member международного научно-технического общества Optical Society of America за значительные профессиональные достижения в области оптики и фотоники
2012 аспирант Д.М. Натаров получил стипендию Международного Вышеградского фонда для научной работы в Национальном институте телекоммуникаций Министерства связи Польской республики в Варшаве
2012 аспирантка О.В. Шаповал получила стипендию Международного Вышеградского фонда для научной работы в Институте фотоники и электроники Академии наук Чешской республики в Праге
2012 аспирант Д.М. Натаров получил премию международного научно-технического общества Institute of Electrical and Electronic Engineering, Antennas and Propagation Society для научной работы
2011 н.с. Е.И. Смотрова награждена почетной грамотой Президиума НАН Украины за цикл работ «Электромагнитные поля и пороги самовозбуждения собственных мод одиночных и связанных микрорезонаторов с активными зонами»
2010 м.н.с. В.С. Булыгин награжден премией Европейской микроволновой ассоциации за доклад на Международном харьковском симпозиуме «Физика и техника микроволн, мм и суб-мм волн»
2010 м.н.с. Е.И. Смотрова получила премию им. К. Садувы за 2009 год от международного научно-технического общества Institute of Electrical and Electronic Engineering, Women in Engineering за достижения в научной работе
2010 аспирантка О.В. Шаповал получил премию международного научно-технического общества Institute of Electrical and Electronic Engineering, Antennas and Propagation Society для научной работы
2009 аспирант В.А. Белобров получил стипендию Международного Вышеградского фонда для научной работы в Институте фотоники и электроники Академии наук Чешской республики в Праге
2009 аспирант В.С. Булыгин награжден стипендией им. А.И. Ахиезера Харьковского областного совета для научной работы
2008 А.И. Носич награжден почетной грамотой IEEE за вклад в развитие IEEE и инженерных профессий, как председатель IEEE Chapter East Ukraine
2008 м.н.с. Е.И. Смотрова получила стипендию Международного Вышеградского фонда для научной работы в Институте фотоники и электроники Академии наук Чешской республики в Праге
2008 А.И. Носич награжден почетной грамотой Президиума НАН Украины за многолетнюю плодотворную работу, значительный личный вклад в развитие отечественной науки и в ознаменование 90-летия НАН Украины
2007 аспирант В.А. Белобров получил премию международного научно-технического общества Institute of Electrical and Electronic Engineering, Antennas and Propagation Society для научной работы
2005 аспирантка Е.И. Смотрова получила стипендию Международной ассоциации INTAS для научной работы в Университете г. Ноттингем, Великобритания
2004 аспирантка Е.И. Смотрова получила премию международного научно-технического общества Institute of Electrical and Electronic Engineering, Electron Devices Society за демонстрацию способности проведения независимых исследований в области электронных устройств и научные достижения
2003 доктор физ.-мат. наук А.И. Носич получил звание IEEE Fellow международного научно-технического общества Institute of Electrical and Electronic Engineering, Antennas and Propagation Society, за вклад в вычислительную электродинамику антенн и открытых волноводов
image001

Вручение Е.И. Смотровой премии IEEE ED-S на заседании Ученого совета ИРЭ (2005)

 image002

 О.В. Шаповал получает премию TICRA Foundation на Европейской конференции по антеннам и распространению волн (2014)

image014

Президент Университета  г. Рен 1 награждает А.И. Носича почетным званием DHC (2015)

 

Сотрудничество

Международное сотрудничество в 2005-2015 Лаборатория участвовала в таких государственных научных программах и конкурсах:

  • 2014-2016, сотрудничество НАНУ с АН Чешской республики, проект «Оптические резонансы в многоэлементных плазмонных структурах для наносенсоров: электродинамическое моделирование и эксперименты», рук. А.И. Носич
  • 2011-2012, программа «Дніпро», Госкомнаука, сотрудничество с Францией, проект «Микролазеры на органических материалах: эксперименты и моделирование», рук. Е.И. Смотрова
  • 2010-2014, Государственная целевая программа «Нанотехнологии и наноматериалы», проект «Фундаментальное математическое и численное исследование оптических электромагнитных полей одиночных и связанных микрорезонаторных лазеров с наноразмерными активными слоями, нитками и лентами», рук. А.И. Носич
  • 2008-2010, сотрудничество Украины с НАТО, Госкомнаука (МОН в 2010), проект «Численное моделирование квазиоптических фокусирующих систем», рук. А.И. Носич
  • 2008-2010, сотрудничество НАНУ с TUBITAK, Турция, проект «Инновационное электродинамическое моделирование многоэлементных квазиоптических систем», рук. А.И. Носич
  • 2007-2010, сотрудничество НАНУ с АН Чешской республики, проект «Электро-динамическое и численное моделирование активных и нелинейных микрорезонаторов для полупроводниковых лазеров и оптических переключателей», рук. А.И. Носич
  • 2007-2009, программа фундаментальных исследований НАНУ «Наноструктурные системы, наноматериалы, нанотехнологии», проект «Микро и нано-размерное электродинамическое моделирование оптических полей в резонаторах с активными зонами в виде квантовых слоев, ниток и точек», рук. А.И. Носич
  • 2006, сотрудничество НАНУ с CNRS, Франция, проект «Анализ и оптимизация линзовых антенн для систем электромагнитных волн миллиметрового и терагерцевого диапазонов», рук. А.И. Носич
  • 2005-2006, программа «Дніпро», Отдел науки МОН, сотрудничество с Францией, проект «Инновационные линзовые антенны для систем электромагнитных волн миллиметрового и терагерцевого диапазонов», рук. А.И. Носич
  • 2005-2006, сотрудничество НАНУ с TUBITAK, Турция, проект «Обработка света с помощью микро и наноразмерных зеркал и линз для новых приложений в оптоэлектронике», рук. А.И. Носич
Наши исследования были поддержаны грантами международных фондов и организаций:
  • 2012-2014, Исследовательская сеть "Plasmon-Bionanosense" Европейского научного фонда, «Новые подходы к разработке биохимических сенсоров на основе плазмонных эффектов в бионанофотонике», 5 рабочих визитов от 2 недель до 4 месяцев, А.И. Носич, В.А. Белобров, Д.М. Натаров, Н.К. Сахненко, О.В. Шаповал. Страны-партнеры - Великобритания, Чешская республика, Германия, Испания, Франция
  • 2011-2012, Европейская рамочная программа FP-7, проект «Спин-термо-электроника», Швеция, рук. А.И. Носич
  • 2010-2011, Программа реинтеграции, Отдел науки НАТО, «Углубленное численное моделирование квазиоптических фокусирующих систем», рук. А.И. Носич
  • 2009-2010, Регион Бретань, Франция, проект «Международная исследовательская кафедра: Новые границы электродинамики – Передовые численные инструменты на основе уравнений Максвелла для точного анализа и быстрого синтеза диэлектрических рассеивателей и резонаторов для новых приложений в электродинамике и фотонике», рук. А.И. Носич
  • 2008-2009, Исследовательская сеть, Министерство европейских и иностранных дел, Франция, проект «Электродинамическое моделирование и проектирование диэлектрических резонаторов и линз для новых приложений в фотонике и терагерцах», рук. А.И. Носич
  • 2007-2009, Учебно-исследовательская сеть, Министерство науки и образования, Франция, проект «Углубленное численное моделирование и проектирование диэлектрических линзовых антенн», рук. А.И. Носич
  • 2007-2009, Программа международных проектов, Королевское общество, Великобритания, проект «Углубленное моделирование одиночных и периодических активных диэлектрических резонаторов для микролазеров», рук. А.И. Носич
  • 2007-2009, Программа международных проектов, CNRS, Франция, проект «Проектирование и оптимизация миниатюрных интегрированных фокусирующих устройств для сверхширокополосных систем связи», рук. А.И. Носич
  • 2005-2006, Совет по инженерным и физическим наукам (EPSRC), Великобритания, проект «Развитие математических и численных методов электродинамики для приложений в оптоэлектронике», рук. А.И. Носич
  • 2005-2006, Программа международных проектов, Королевское общество, Великобритания, проект «Моделирование микро и наноразмерных резонаторов и линз для оптических схем высокой плотности», рук. А.И. Носич
  • 2010-2013, Исследовательская сеть "Newfocus" Европейского научного фонда, «Новые горизонты в развитии интегрированных фокусирующих систем мм и суб-мм диапазонов волн», 12 рабочих визитов от 2 недель до 6 месяцев, А.И. Носич, В.А. Белобров, М.В. Балабан, В.М. Булыгин, Д.М. Натаров, Н.К. Сахненко, Е.И. Смотрова, О.В. Шаповал Страны-партнеры - Англия, Франция, Швейцария, Германия, Италия
К международным контрактам, выполненным в лаборатории, можно отнести следующее:
  • 2014, Университет г. Векше, Швеция, курс лекций «Методы интегральных уравнений и дискретизация по Найстрему в электродинамике антенн и лазеров», А.И. Носич
  • 2014, Школа по биофотонике и оптике, Байонна, Франция, курс лекций «Введение в нано-электродинамику для оптических антенн, резонаторов и лазеров», А.И. Носич
  • 2012, Университеты Чуо и Нихон, г. Токио, Япония, курс лекций «Моделирование антенн и открытых резонаторов методами интегральных уравнений», А.И. Носич
  • 2009, Университет г. Сиена, Италия, курс лекций «Методы интегральных уравнений в электродинамике с приложениями к антеннам, резонаторам и лазерам», А.И. Носич
  • 2007, Датский технический университет, Дания, курс лекций «Углубленный курс по электродинамике с приложениями к оптоэлектронике и микроволнам», А.И. Носич

Подготовка кадров

За время существования лаборатории были защищены 1 докторская диссертация (Н.К. Сахненко, 2012г.), 4 кандидатских диссертаций (Е.И. Смотрова, 2010, В.С. Булыгин, 2010; М.В. Балабан, 2012 и О.В. Шаповал, 2014).

На данный момент в отделе работают 2 соискателя (В.А. Белобров и Д.М. Натаров)

Сотрудники

Ф.И.О. Должность Уч. степ. Уч. зван. e-mail Телефон, рабочий Место работы
Носич Александр Иосифович г.н.с., и.о. зав. лаб. д. ф.-м.н., проф. anosich@yahoo.com 720-3782 корп. 4, к. № 35
Балабан Михаил Васильевич с.н.с. к. ф.-м. н. mikhail.balaban@gmail.com 720-3782 корп. 6-А, к. № 20
Булыгин Виталий Сергеевич с.н.с. к. ф.-м. н. vitaliy_bulygin@yahoo.com 720-3782 корп. 6-А, к. № 20
Шаповал Ольга Владимировна н.с. к. ф.-м. н. olga.v.shapoval@gmail.com 720-3382 корп. 4, к. № 35
Стогний Надежда Петровна н.с. к. ф.-м. н. nstognii@gmail.com 720-3782 корп. 4, к. № 35
Белобров Владимир Александрович м.н.с. - volodia.byelobrov@gmail.com 720-3325 корп. 4, к. № 64
Натаров Денис Михайлович м.н.с. - den.natarov@hotmail.com 720-3338 корп. 4, к. № 64
Смотрова Елена Ивановна с.н.с. к. ф.-м. н. сотрудник лаборатории в 2010-2013
Сахненко Наталия Константиновна с.н.с. д. ф.-м. н. доцент сотрудник лаборатории в 2013-2015

Print Friendly